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It has long been argued that a resident may benefit from helping its neighbor defend a territory against

a challenger to avoid renegotiating its boundaries with a new and potentially stronger individual. We

quantify this theory by exploring games involving challengers, residents and potential allies. In a

simplified discrete game with zero variation of fighting strength, helping neighbors is part of an

evolutionarily stable strategy (ESS) only if fighting costs are low relative to those of renegotiation.

However, if relative fighting costs are high then an interventional ESS remains possible with finite

variation of strength. Under these conditions, neighbors may help residents fight off intruders, but only

when the resident does not stand a reliable chance of winning alone. We show that neighbor

intervention is more likely with low home advantage to occupying a territory, strengths combining

synergistically or low probability that an ally will be usurped, amongst other factors. Our parameterized

model readily explains occasional intervention in the Australian fiddler crab, including why the ally

tended to be larger than both the assisted neighbor and the intruder. Reciprocity is not necessary for this

type of cooperation to persist, but also it is by no means inevitable in territorial species.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Following Fisher (1954), the term ‘‘dear–enemy effect’’ has
been used to describe a less aggressive response to intrusions by
territorial neighbors than to intrusions by strangers (Temeles,
1994). In some cases, this deference towards familiar neighbors
may extend to active assistance to help ward off a heterospecific
intruder. For example, male red-winged blackbirds (Agelaius

phoeniceus) often cooperate with their neighbors in defending
nests against predators such as crows (Olendorf et al., 2004).
Likewise, pied flycatchers (Ficedula hypoleuca) assist in the
mobbing of potential predators, particularly when the neighbor
has helped in the recent past (Krams et al., 2008). However, in
other species, individuals have been observed to intervene to help
a neighbor defend its territory against a floating conspecific. For
example, despite being competitors for mates, male rock pipits
(Anthus petrosus) have been observed to engage in coordinated
evictions of conspecific intruders from both within the border
zones between territories, and from within established territories
(e.g., Elfström, 1997). One of the most recent and compelling
examples of neighbor intervention comes from work on the
fiddler crab Uca mjoebergi on the northern coastlines of Australia,
where burrow-holding males aggressively defend their burrows
ll rights reserved.
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from wandering males (intruders). Backwell and Jennions (2004)
found that male fiddler crabs may sometimes leave their own
territories to help neighbors defend their territories against these
floating intruders. In these cases, the ally was always larger than
the assisted neighbor and typically larger than the intruder: we
return to these intriguing observations later in our paper.

Why would a resident ever pay a cost to help its neighbor deter
an intruder (a ‘‘floater’’)? In a seminal paper on the subject, Getty
(1987) proposed two explanations for the phenomenon. First, the
behavior may be maintained by a form of reciprocation in which
established territory holders pay short-term costs to help one
another to retain their territories. Second, inspired by arguments
of Krebs (1982), Getty (1987) proposed that it may benefit a
resident to help its neighbor to defend a territory, so that it can
avoid having to renegotiate the boundaries with a new and
potentially stronger individual. This second theory is particularly
attractive, in part because as yet there is no evidence that
competitive collusion among conspecifics is maintained by
reciprocation (e.g., Elfström, 1997) and direct evidence to the
contrary (e.g., Backwell and Jennions, 2004). Indeed there has
been remarkably little evidence of any kind of reciprocity in
nature (Hammerstein, 2003).

To date, there has been almost no formal treatment of the
hypothesis that residents help neighbors to avoid future costs of
renegotiation. Getty (1981) presented a crowding model in which
territory holders can collude to deter or preempt the establish-
ment of further competitors, but the model focused more on the
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phenomenon of sequential territorial establishment. To support
the specific hypothesis he had raised, Getty (1987) discussed the
relative benefits of helping compared to not helping from a
phenomenological perspective, but did not delve into the under-
lying mechanics of interactions between residents, neighbors and
intruders. Here we continue the work of Getty (1987) by
developing just such a model. We attempt to predict when it is
less costly to assist a familiar neighbor than to renegotiate
boundaries with a new and potentially stronger one and the
conditions under which such behavior would evolve. In particular,
we aim to confirm that there need be no reciprocity.

In our analysis we consider a large population of individuals
who interact in triads. Two members of each triad are territorial
residents, and the third is a floating intruder. Thus each individual
has two possible strategic roles, that of potentially intervening
resident (role A, for ally) and potentially attacking non-resident
(role C, for challenger). The role, B (for Buddy), of the resident who
has been intruded upon is non-strategic: if offered help by his
neighbor in the event of an attack, an individual in role B accepts
the help, but otherwise he fights alone to defend his territory.
2. Discrete mathematical model

We will ultimately allow strength to vary, assuming that an
intruder has no information about a resident’s strength and vice
versa, but that neighbors are sufficiently familiar to know one
another’s strengths, essentially because they have already settled
upon a territorial boundary at the point where their strength-
dependent territorial pressures balance (Adams, 2001, p. 283). To
set the scene, however, we begin by assuming that variance of
strength is zero and consider a simple bimatrix game. Suppose
that in role A an individual either Helps (H) or Ignores (I), whereas
in role C an individual either Fights (F) or Desists (D) from
fighting. Then we have four conditional pure strategies as follows:

HAFC: Help neighbor in role A, Fight resident B in role C
IAFC: Ignore neighbor in role A, Fight resident B in role C
HADC: Help neighbor in role A, Do not challenge in role C
IADC: Ignore neighbor in role A, Do not challenge in role C
We assume for simplicity that a coalition of two will defeat a lone
individual with probability r whereas a lone resident will defeat
an intruder with probability 1

2ð1þ mÞ, where 0pmo1 and

1
2ð1þ mÞprp1. (1)

Parameter m can be interpreted as the advantage of ownership,
i.e., the degree to which a resident’s probability of winning is
increased beyond 1

2 (where m ¼ 0) toward 1 (where m ¼ 1) in a
contest between evenly matched opponents. Parameter r can be
interpreted as a measure of the reliability of numerical advantage
or strength difference as a predictor of contest outcome.
Reliability is perfect when r ¼ 1; and, at the other extreme, if
r ¼ 1

2ð1þ mÞ then a challenger has the same probability 1
2ð1� mÞ of

winning, regardless of whether his opponent is an unaided
individual or a coalition. Let V be the benefit of a territory, K0

the cost of renegotiating a boundary and K1 the cost of an
Table 1
Payoff matrix ½aij� for the discrete game with zero variance

HAFC IAFC

HAFC �3
4K1 þ

1
2ð1� rÞðV � 2K0Þ

1
4fð1� mÞðV � K0Þ � 3K

IAFC �1
4fð1� mÞK0 þ 2K1g þ

1
2ð1� rÞðV � K0Þ

1
4fð1� mÞðV � 2K0Þ � 2K

HADC �1
4K1 �

1
2ð1� rÞK0 �1

4K1 �
1
2ð1� rÞK0

IADC �1
4ð1� mÞK0 �1

4ð1� mÞK0
ownership contest, of which an unaided individual pays all,
whereas each half of a coalition pays only 1

2K1; V, K0 and K1 are all
assumed to be constant. Then, assuming—temporarily, and only
for ease of presentation—that roles A and C are equally likely, the
payoff matrix is as shown in Table 1. For example, suppose HAFC
meets IAFC. In role A the cost �1

2K1 of fighting in a coalition is
always paid, and with probability 1� r there is an additional
boundary re-negotiation cost K0 because the intruder wins
(and either way there is zero change in territorial benefit). In role
C the benefit is �K1 (lose and incur whole cost) with probability
1
2ð1þ mÞ or V � K1 � K0 (win, pay costs of fight and boundary
negotiation) with probability 1

2ð1� mÞ. Hence the payoff is 1
2 � f�

1
2

K1 � ð1� rÞK0g þ
1
2 � f

1
2ð1 þ mÞð�K1Þ þ

1
2ð1� mÞðV � K1 � K0Þg ¼

1
4

fð1� mÞðV � K0Þ � 3K1g �
1
2ð1� rÞK0. Similarly for the other 15

cases. Because this game is asymmetric, it cannot have an
evolutionarily stable strategy (ESS) in mixed strategies (Selten,
1980): the only candidates for ESS are the four pure strategies. Let
aij denote the element in row i and column j of the payoff matrix.
Then neither HADC nor IADC is an ESS because a43oa33 and
a34oa44 are both false. But HAFC (Help as Ally, Fight as
Challenger) is an ESS when a114maxfa21; a31; a41g or

K1ominfð1� rÞðV � K0Þ; ð2r� m� 1ÞK0g (2)

and IAFC (Ignore as Ally, Fight as Challenger) is an ESS when
a224maxfa12; a32; a42g or

ð2r� m� 1ÞK0oK1o1
2ð1� mÞðV � K0Þ. (3)

These are mutually exclusive possibilities: ð2r� m� 1ÞK0 cannot
be both greater and less than K1. Note that (2) can hold only if (1)
is satisfied with strict inequality, i.e., if 1

2ð1þ mÞoro1: helping
cannot be evolutionarily stable if the reliability parameter
assumes an extreme value, i.e., if a coalition is either guaranteed
to win or has no more chance of winning than an unaided
resident. Furthermore, because 2r� m� 1p1, (2) can hold only if
K1oK0, i.e., if the costs of renegotiating a boundary exceed those
of fighting. Correspondingly, if K14K0 so that the costs of fighting
exceed those of renegotiation, then only (3) can hold.

We pause to emphasize that our assumption of equal
probabilities for roles A and C is purely for presentational
convenience. The above results do not depend on it in any way:
because of Selten’s theorem (Selten, 1980), the only essential
requirement is that roles A and C are mutually exclusive. The
statement that, for example, HAFC is an ESS is then the dual
statement that (i) H is the best response in role A to an individual
who selects F (in role C) and (ii) F is the best response in role C to
an individual who selects H (in role A). To establish (i), we note
that the payoff to H against F is �1

2K1 � ð1� rÞK0, because a helper
always pays half the cost of the fight but pays the additional
renegotiation cost only in the event of a loss; whereas the payoff
to I against F is �1

2ð1� mÞK0, because a potential helper who
ignores its buddy pays a (renegotiation) cost only if the unaided
buddy loses. So H is the best response when �1

2K1 � ð1� rÞK04�
1
2ð1� mÞK0 or K1oð2r� m� 1ÞK0. To establish (ii), we note that
the payoff to F against H is rð�K1Þ þ ð1� rÞðV � K0 � K1Þ ¼

ð1� rÞðV � K0Þ � K1, because a challenger always pays the full
cost of the fight but gains a territory only if the coalition loses;
HADC IADC

1g �
1
2ð1� rÞK0 �1

2K1 þ
1
2ð1� rÞðV � K0Þ

1
4fð1� mÞðV � K0Þ � 2K1g

1g �1
2K1 þ

1
2ð1� rÞðV � K0Þ

1
4fð1� mÞðV � K0Þ � 2K1g

0 0

0 0
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whereas the payoff to D against H is zero. So F is the best response
when ð1� rÞðV � K0Þ � K1 is positive or K1oð1� rÞðV � K0Þ. Thus
(i) and (ii) are equivalent to (2). Similarly for IAFC.

We have now shown that helping can be evolutionarily stable
if K1 (the cost of an ownership contest) is sufficiently low,
although it should be noted from (2) that sufficiently low would
mean very close to zero if reliability were very high (r � 1).
However, the original qualitative arguments for neighbor inter-
vention rested in part on recognizing that any challenger that
ousted its neighbor was likely to be stronger than the neighbor.
So, any strategic decision to intervene is likely to involve
‘‘judicious decision making’’ rather than automatic intervention,
as the results of Backwell and Jennions (2004) confirm. To explore
this issue further—and thus show that helping can be evolutio-
narily stable even if the costs of fighting exceed those of
renegotiation—we require a more sophisticated model allowing
for variation in fighting ability, which we now proceed to develop
and explore.
3. Continuous mathematical model

Here we describe our continuous model. Beyond allowing for
variance of strength, our assumptions remain as before. That is,
we still consider a large population of individuals who interact in
triads; two members of each triad are residents, and the third is
an intruder; a focal u-strategist in a population of v-strategists
still has two possible roles, that of potentially intervening resident
(role A, for ally) and potentially attacking non-resident (role C, for
challenger); and the role, B (for Buddy), of the resident who has
been intruded upon remains non-strategic—if offered help by his
neighbor in the event of an attack, an individual in role B accepts
the help, but otherwise he fights alone to defend his territory.

Let X be the strength of the focal u-strategist, let Y be the
strength of the individual in role B and let Z be the strength of the
v-strategist in the role complementary to that of the focal
u-strategist. The strengths X, Y and Z are drawn from a common
distribution on ½0; 1� with probability density function g and
cumulative distribution function G. In nature, distributions of
fighting ability are typically fairly symmetric (see, e.g., McDonald,
1981, p. 135 and seq.), so an appropriate choice of distribution
for theoretical purposes is one that is perfectly symmetric on
[0,1] with mean 1

2. We choose the symmetric Beta distribution
defined by

gðxÞ ¼
Gð2aÞ

fGðaÞg2
xa�1
ð1� xÞa�1, (4)

where G denotes Euler’s gamma function, i.e., GðZÞ ¼R1
0 e�xxZ�1 dx (see, e.g., Kempthorne and Folks, 1971, p. 107). For

a ¼ 1 this distribution is uniform; for a41 it is unimodal, and its
variance decreases with a according to

s2 ¼
1

4ð1þ 2aÞ
. (5)

Throughout, we assume that aX1, or s2p 1
12.

We assume that the neighbors in roles A and B have
established a mutual territorial boundary and are therefore
sufficiently familiar with one another that an individual in role
A will know the strength of an individual in role B; however, he
does not know the strength of the individual in role C, and the
individual in role C does not know the strength of either resident.
Thus the information structure allows each member of the
population to condition his behavior on the strengths of himself
and his neighbor when occupying role A, but only on his own
strength when occupying role C. Accordingly, we define strategy
u ¼ ðu0;u1;u2Þ to mean that a focal individual in role A will help
his neighbor in role B in the event of an attack if X4u0 and You1

but desist from helping if Xpu0 or YXu1; and that a focal
individual in role C, having intruded upon a resident (who is
therefore in role B), will attack if X4u2 but desist from attacking if
Xpu2. Thus the vector ðu0;u1;u2Þ contains the thresholds that
define the behavior a focal individual of strength X with respect to
one of strength Y, regardless of whether its role is that of neighbor
and potential ally (first two components) or intruder and potential
challenger (third component); and the strategy space is the unit
cube where 0pu0;u1;u2p1. Note that both the front and right-
hand faces of this cube, where u1 ¼ 0 or u0 ¼ 1, respectively,
consist entirely of non-interventional strategies.

Two kinds of contest are involved in this system, a contest for
ownership and a contest for territorial division. A contest between
animals in roles B and C is for ownership of a site centered at some
indivisible resource, such as a burrow. We assume that costs are
dependent on differences in fighting strength and that contests
take longer between more evenly matched opponents, because
they take longer to discover who is stronger. Let KðDsÞ denote
the cost of such a contest between opposing parties whose
effective strengths differ by Ds; K must be an even function (i.e., a
function of jDsj), and we assume that KðDsÞ ¼ 0 for jDsjX2. For
jDsjp2 we choose

KðDsÞ ¼ K1f1�
1
4jDsj2gk (6)

as in Mesterton-Gibbons and Sherratt (2007). Here k is a measure
of the sensitivity of cost to strength difference, in the sense that a
small difference in strength implies a large cost reduction when k

is very high but virtually no cost reduction when k is very low. The
graph of K is plotted in Fig. 1 for four different values of k.

We assume that fighting costs in an ownership contest are
equally borne by all members of a coalition. So a lone individual
bears the whole cost of fighting, whereas a pair of allies splits the
cost equally. Hence an ownership contest between individuals of
strength S1 and S2 costs each

c1ðS1; S2Þ ¼ KðS1 � S2Þ, (7)

where K is defined by (6). On the other hand, a contest between
allies of strengths S1, S2 and a third individual of strength S3 costs
each ally

c21ðS1; S2; S3Þ ¼
1
2KðqfS1 þ S2g � S3Þ, (8)

where q (41
2) denotes synergicity and qðS1 þ S2Þ is the effective

strength of the coalition, as in Mesterton-Gibbons and Sherratt
(2007); whereas an individual of strength S1 pays

c12ðS1; S2; S3Þ ¼ KðS1 � qfS2 þ S3gÞ (9)

to fight alone against a pair of allies of strengths S2 and S3.
Let pRðDsÞ denote the probability of winning for a resident

coalition or individual whose combined effective strength exceeds
that of its opponent by Ds, and let pIðDsÞ denote the corresponding
probability of winning for an intruder. Then

pRðDsÞ þ pIð�DsÞ ¼ 1 (10)

for all Ds, with

pRð0Þ ¼
1
2ð1þ mÞ, (11)

where m denotes advantage of ownership, i.e., degree to which a
resident’s probability of winning is increased beyond 1

2 toward 1 in
a contest between evenly matched opponents. We set pR ¼ 0 for
Dso� 2 and pR ¼ 1 for Ds42 (both possible only if q41); and for
Ds 2 ½�2; 2�, for all r40 we choose

pRðDsÞ ¼
Gð2rÞ

GðrÞ2
B 1

2þ
1
4Ds; r; r

� �( )1�lnð1þmÞ= lnð2Þ

, (12)
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Fig. 1. Top: How K (the cost of fighting) defined by (6) varies with difference in

fighting strength between parties for four different values of the sensitivity

parameter k. Middle and bottom: How pR (resident probability of winning an

ownership fight) defined by (12) varies with difference in fighting strength for

r ¼ 0:1 (thin solid curve), r ¼ 1 (dotted), r ¼ 10 (dashed) and r ¼ 100 (thick solid

curve) for two different values of m.
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where B is the incomplete Beta function, i.e., BðZ; x1;x2Þ ¼
R Z

0 zx1�1

ð1� zÞx2�1 dz. Note that (12) satisfies both pRð�2Þ ¼ 0 and
pRð2Þ ¼ 1, in addition to (11). The graph of p is plotted in Fig. 1
for m ¼ 0 and 0.6 for four different values of r, which is a measure
of the reliability of strength difference as a predictor of fight
outcome. Hence for consistency we set pR ¼

1
2ð1þ mÞ for all Ds

when r ¼ 0 (which is also the limit of (12) as r! 0). The middle
figure corresponds to Figure 1a of Mesterton-Gibbons and
Sherratt (2007).

By contrast, a contest between an animal in roles A and an
animal who has been successful in role C is to settle a boundary
between neighboring burrows. The resource is divisible: more
evenly matched opponents will settle on a boundary nearer to the
midpoint between burrows, but we would not expect the length
of the contest to depend on the strength difference between
individuals. On the other hand, the cost could depend on the
strengths of the contestants for other reasons; e.g., it could be
higher for a weaker animal, as assumed by Mesterton-Gibbons
and Adams (2003). Accordingly, we allow for greater generality in
the initial formulation of our model by using c0ðS1; S2Þ to denote
the cost of such a contest between individuals of strengths S1 and
S2. But it is surely at least not unreasonable to assume that this
type of contest is of fixed length; and so, for the sake of
tractability, we will largely assume that

c0ðS1; S2Þ ¼ K0. (13)
We follow Mesterton-Gibbons and Adams (2003) in determin-
ing the residents’ mutual territorial boundary. We assume that
their burrows (or the focal points of their territories in the case of
birds) are at opposite ends of a line segment, whose length is
defined (without loss of generality) to be the unit of distance, and
that the boundary is established where their effective fighting
abilities are equal. Thus the line segment divides into two smaller
segments that represent the territories of the residents. We
assume that these territories always fill the expanse between the
burrows. The marginal value of territory expansion is the same
constant b for all residents, and so the value of the territory thus
obtained is simply b times the length of the relevant segment. Let
S denote strength. For all residents, the effective fighting ability
that can be brought to bear at a particular location increases with
S but declines with distance from the burrow, denoted by d. For
the sake of simplicity, we assume that both relationships are
linear: specifically, we assume that the territorial pressure P that
an animal exerts increases at rate r1 with respect to strength and
decreases at rate r2 with respect to distance, according to

P ¼ P0 þ r1S� r2d, (14)

where all parameters are positive. To simplify our analysis, we
also assume that r1or2, so that even the weakest owner exerts a
greater pressure at its own burrow than even the strongest
neighbor. A territorial boundary between animals in roles A and B
occurs where the neighbors exert equal pressure. Let the
boundary be at distance xðX;YÞ from the focal individual’s burrow
when it occupies role A. Then, from (14), P0 þ r1X � r2x ¼ P0 þ

r1Y � r2ð1� xÞ or

xðX;YÞ ¼ 1
2f1þ yðX � YÞg, (15)

where

y ¼ r1=r2 (16)

satisfies yo1. The greater the value of r1 relative to r2, the more
effective is greater strength in rolling back the boundary toward
the neighbor’s burrow, and so we will refer to y as elasticity of
territorial pressure. Note that y is the length of the interval
(centered around the midpoint of the line segment between
burrows) in which the boundary can lie; or equivalently, the
boundary falls at least 1

2ð1� yÞ from an animal’s burrow. Note also
that 1� xðX;YÞ ¼ xðY ;XÞ.
4. Analysis of reward

Consider first a u-strategist in role A whose neighbor has been
attacked. Then Z4v2, because the intruder is a v-strategist. If
Xpu0 or YXu1 then the potential ally does not help. With
probability pRðY � ZÞ, the neighbor evicts the intruder unaided
and there is zero change in the protagonist’s fitness because
the boundary remains where it was. With probability pIðZ � YÞ,
however, the invader wins and the protagonist must re-negotiate
the boundary through a contest that costs c0ðX; ZÞ. The new
boundary will fall at distance xn ¼ xðX; ZÞ from his burrow;
and because the old boundary was at distance xo ¼ xðX;YÞ, the
payoff to the u-strategist in these circumstances—the change
in his fitness—is bðxn � x0Þ � c0ðX; ZÞ ¼

1
2byðY � ZÞ � c0ðX; ZÞ, on

using (15).
If, on the other hand, X4u0 and You1 then the potential ally

intervenes on behalf of his neighbor at cost c21ðX;Y ; ZÞ. With
probability pRðqfX þ Yg � ZÞ the coalition wins, and the territorial
boundary between the allies remains unchanged. The payoff to
the u-strategist in these circumstances—the change in his
fitness—is simply �c21ðX;Y ; ZÞ. With probability pIðZ � qfX þ YgÞ,
however, the intruder evicts the individual in role B and the focal
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individual must renegotiate his boundary as above, the payoff in
these circumstances being bðxn � x0Þ � c0ðX; ZÞ � c21ðX;Y ; ZÞ ¼
1
2byðY � ZÞ � c0ðX; ZÞ � c21ðX;Y ; ZÞ. Hence, conditional upon X4u0

and You1, the u-strategist’s payoff is pRðqfX þ Yg � ZÞf�c21

ðX;Y ; ZÞg þ pIðZ � qfX þ YgÞf12byðY � ZÞ � c0ðX; ZÞ � c21ðX;Y ; ZÞg ¼ pI

ðZ � qfX þ YgÞf12byðY � ZÞ � c0ðX; ZÞg � c21ðX;Y ; ZÞ, on using (10).
There is, however, a further complication. It is possible that in

leaving his territory to help his neighbor, the focal individual risks
being usurped by another floater. Let � be the probability of being
so usurped when helping a neighbor. Then the above conditional
payoff arises only with probability 1� �; with probability � the
focal individual finds that he has lost his territory, so that
his conditional payoff from interacting with the v-strategist
is no longer pIðZ � qfX þ YgÞf12byðY � ZÞ � c0ðX; ZÞg � c21ðX;Y ; ZÞ

but rather �bxðX;YÞ � c21ðX;Y ; ZÞ, regardless of whether his
neighbor won or lost. Thus the payoff in role A to the focal
individual is FAðX;Y ; Z;u; vÞ ¼ HiðX;Y ; ZÞ for ðX;Y ; ZÞ 2 Oiðu; vÞ,
where the events Oi and the payoffs Hi are defined in Table 2
for i ¼ 1; . . . ;3.

Consider now a u-strategist in role C who has made the
decision to attack the resident in role B: then X4u2, because the
intruder is now a u-strategist. If Zpv0 or YXv1 then the potential
ally, now a v-strategist, does not help. With probability pRðY � XÞ

the u-strategist is evicted with fitness gain �c1ðX;YÞ. With
probability pIðX � YÞ, however, the protagonist wins and must
negotiate a boundary through a contest that costs c0ðX; ZÞ. The
boundary will fall at distance xðX; ZÞ from his burrow, the
payoff—the change in his fitness—being bxðX; ZÞ � c0ðX; ZÞ�

c1ðX;YÞ. Hence, conditional upon Zpv0 or YXv1, the u-strategist’s
payoff is pRðY � XÞf�c1ðX;YÞg þ pIðX � YÞfbxðX; ZÞ � c0ðX; ZÞ �

c1ðX;YÞg ¼ pIðX � YÞfbxðX; ZÞ � c 0ðX; ZÞg � c1ðX;YÞ, on using (10).
If, on the other hand, Z4v0 and Yov1 then the potential ally

intervenes on behalf of his neighbor. With probability pRðqfY þ

Zg � XÞ the coalition wins, and the territorial boundary between
the allies remains unchanged. The payoff to the u-strategist in
these circumstances—the change in his fitness—is simply
�c12ðX;Y ; ZÞ. With probability pIðX � qfY þ ZgÞ, however, the focal
individual evicts the individual in role B and must negotiate his

boundary as above, the payoff being bxðX; ZÞ � c0ðX; ZÞ�

c12ðX;Y ; ZÞ. Hence, conditional upon Z4v0 and Yov1, the
u-strategist’s payoff is pRðqfY þ Zg � XÞf�c12ðX;Y ; ZÞg þ pIðX � q

fY þ ZgÞfbxðX; ZÞ�c0ðX; ZÞ�c12ðX;Y ; ZÞg¼pIðX �qfY þ ZgÞfbxðX; ZÞ�
c0ðX; ZÞg � c12ðX;Y ; ZÞ, on using (10). Thus the payoff in role

C to the focal individual is FCðX;Y ; Z;u; vÞ ¼ hiðX;Y ; ZÞ for
Table 2
Payoff to a focal u-strategist of strength X, conditional on being in role A, where Y

and Z are the strengths of the individuals in roles B and C

Case i EventOiðu; vÞ Payoff HiðX;Y ; ZÞ

1 Zpv2 0

2 Xpu0 or YXu1, Z4v2 f12byðY � ZÞ � c0ðX; ZÞgpIðZ � YÞ

3 X4u0, You1, Z4v2 ð1� �Þf12byðY � ZÞ � c0ðX; ZÞgpIðZ � qfX þ YgÞ

��fbxðX;YÞ þ c21ðX;Y ; ZÞg

Table 3
Payoff to a focal u-strategist of strength X, conditional on being in role C, where Y

and Z are the respective strengths of the individuals in roles B and A

Case i Eventoiðu; vÞ Payoff hiðX;Y ; ZÞ

1 Xpu2 0

2 X4u2, YXv1 or Zpv0 pIðX � YÞfbxðX; ZÞ � c0ðX; ZÞg � c1ðX;YÞ

3 X4u2, Yov1, Z4v0 pIðX � qfY þ ZgÞfbxðX; ZÞ � c0ðX; ZÞg � c12ðX;Y ; ZÞ
ðX;Y ; ZÞ 2 oiðu; vÞ, where the events oi and payoffs hi are defined

in Table 3 for i ¼ 1; . . . ;3. If roles A and C are occupied
with probabilities qA and qC , respectively, then the reward to a
u-strategist in a population of v-strategists is the expected value
of qAFAðX;Y ; Z;u; vÞ þ FCðX;Y ; Z;u; vÞqCover the joint distribution of
X, Y and Z, that is,

f ðu; vÞ ¼ qA f Aðu0;u1; v2Þ þ qCf Cðv0; v1;u2Þ, (17)

where

f Aðu0;u1; v2Þ ¼
X3

i¼1

Z Z Z
ðx;y;zÞ2Oiðu;vÞ

Hiðx; y; zÞgðxÞgðyÞgðzÞdx dy dz

(18)

and

f Cðv0; v1;u2Þ ¼
X3

i¼1

Z Z Z
ðx;y;zÞ2oiðu;vÞ

hiðx; y; zÞgðxÞgðyÞgðzÞdx dy dz

(19)

(the first contribution to the sum being zero in either case, from
Tables 2 to 3).
5. Evolutionarily stable strategy

Strategy v ¼ ðv0; v1; v2Þ is a strong ESS in the sense of Maynard
Smith (1982) if it is uniquely the best reply to itself, i.e., if
f ðv; vÞ4f ðu; vÞ for all uav. For v to be such an ESS in the interior of
the strategy space we require the gradient of f with respect to u

to vanish where u ¼ v in such a way that v yields a maximum
(as opposed to a minimum or a saddle point) of f ðu; vÞ. Hence,
from (17), we require

qf A

qu0

����
u0¼v0 ;u1¼v1

¼
qf A

qu1

����
u0¼v0 ;u1¼v1

¼
qf C

qu2

����
u2¼v2

¼ 0 (20)

with w0ðvÞ, w1ðvÞ, w2ðvÞ and w3ðvÞ all negative, where

w0ðvÞ ¼
q2f A

qu2
0

�����
u0¼v0 ;u1¼v1

; w1ðvÞ ¼
q2f A

qu2
1

�����
u0¼v0 ;u1¼v1

; w2ðvÞ ¼
q2f C

qu2
2

�����
u2¼v2

(21)

and w3 is defined in Appendix A; the negativity of all four
quantities ensures that the Hessian matrix of f with respect to u is
negative-definite at u ¼ v. Appendix A describes the required
modifications of these conditions for a boundary ESS. Note that
the conditions do not depend in any way on qA or qC in (17): as in
the discrete model of Section 2, the probabilities of roles A and C
have no effect on the ESS.

From Appendix A, (20) requires v0, v1 and v2 to satisfy the
following simultaneous nonlinear equations:

Z 1

v2

gðzÞ

Z v1

0
f12byðy� zÞ � c0ðv0; zÞgfð1� �ÞpIðz� qfv0 þ ygÞ

� pIðz� yÞggðyÞdy dz

¼

Z 1

v2

gðzÞ

Z v1

0
f�bxðv0; yÞ þ c21ðv0; y; zÞggðyÞdy dz, (22a)

Z 1

v2

gðzÞ

Z 1

v0

f12byðv1 � zÞ � c0ðy; zÞgfð1� �ÞpIðz� qfv1 þ ygÞ

� pIðz� v1ÞggðyÞdy dz

¼

Z 1

v2

gðzÞ

Z 1

v0

f�bxðy; v1Þ þ c21ðy; v1; zÞggðyÞdy dz, (22b)
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Fig. 2. An example of the ESS as a function of r, a measure of the reliability of

strength difference as a predictor of contest outcome, for r4rc � 0:487. As r!1

the ESS asymptotes to v�ð1Þ � ð0:390;0:916;0:482Þ while pi , the probability of

intervention conditional upon a challenge, asymptotes to p1i � 0:559.
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andZ 1

0
gðyÞ

Z 1

0
pIðv2 � yÞfbxðv2; zÞ � c0ðv2; zÞggðzÞdz dy

þ

Z v1

0
gðyÞ

Z 1

v0

fpIðv2 � qfyþ zgÞ � pIðv2 � yÞgfbxðv2; zÞ

� c0ðv2; zÞggðzÞdz dy

¼

Z 1

0
gðyÞ

Z 1

0
c1ðv2; yÞgðzÞdz dyþ

Z v1

0
gðyÞ

�

Z 1

v0

fc12ðv2; y; zÞ � c1ðv2; yÞggðzÞdz dy. (22c)

We can reduce the number of parameters from 10 to 9 by using b

to scale the maximum-cost parameters K0 and K1 in (6)–(13):

g0 ¼
K0

b
; g1 ¼

K1

b
. (23)

Then any solution v ¼ ðv0; v1; v2Þ of (22) is a function of a, g0, g1, k,
q, r, �, y and m.

Here we have a huge parameter space and we need to restrict it
sensibly. With V ¼ 1

2b, four of our continuous model’s original
10 parameters, namely, b, K0, K1 and m, correspond to parameters
of our discrete model in Table 1. By restricting them so that
IAFC—never intervening, always challenging—would be the ESS of
our discrete model if reliability were perfect, i.e., on using (3) with
r ¼ 1 and (23), by requiring g0og1=ð1� mÞo1

4�
1
2g0, we can focus

on how finite variance of strength with imperfect reliability
enables neighbor intervention to be evolutionarily stable. How-
ever, we would also like to be able to vary m independently of the
cost parameters, which the above inequalities preclude. Therefore,
as a practical compromise, we restrict the parameter space only so
that IAFC must be the ESS of the discrete model with perfect
reliability in the absence of ownership advantage, thus requiring

g0og1o
1
4�

1
2g0 (24)

and hence, in particular, g0o
1
6. Note that (23) and (24) ensure that

fighting costs exceed those of renegotiation.
Numerical calculations indicate the following. Eqs. (22) have at

most one solution within the strategy space such that wjðvÞo0
for j ¼ 0;1;2;3. If � is sufficiently small, which we assume, and
if other parameters are likewise not extreme (in ways to be
illustrated below), then there is always such a solution when r is
sufficiently large; i.e., ri exists such that there is a unique interior
ESS for all r4ri. Furthermore, there is a second critical value rc

such that no ESS exists for rprc. It is possible to have rc ¼ ri;
otherwise, there is a range of values rcorpri in which the ESS,
although unique, need not lie in the interior of the strategy space
because either v1 or v2 can assume extreme values. More
precisely, there are values of r satisfying rcorpri such that either
v1 ¼ 1 at the ESS with 0ov0; v2o1, or v2 ¼ 0 at the ESS with
0ov0; v1o1; and in either case, conditions (22) require modifica-
tion, as described in Appendix A. Regardless, for r4rc there exists
a unique ESS, which is interventional in the sense that at least
the strongest potential allies should intervene on behalf of at
least their weakest neighbors because v0o1 and v140. Indeed
with finite variance there cannot exist a non-interventional ESS
because any non-interventional strategy can spread by random
drift among any other non-interventional strategy, as established
in Appendix A.

These points are illustrated by Fig. 2, which shows the ESS as a
function of r for fixed values of the other eight parameters. These
values are chosen so that variance is maximal, there is zero risk of
usurpation, there is no advantage of ownership, synergy is absent
and the cost sensitivity is at least moderately high, in the sense
that a strength difference over one’s opponent of the equivalent
of an individual of maximum strength reduces the cost of a
territorial contest to 10% of its maximum value. In the following
discussion we use an asterisk to distinguish between an arbitrary
population strategy v ¼ ðv0; v1; v2Þ and an ESS population strategy
v� ¼ ðv�0; v

�
1; v
�
2Þ, which is necessarily a solution of (22) if r4ri

(but otherwise satisfies the modified conditions described in
Appendix A); and we use v� ¼ v�ðrÞ ¼ ðv�0ðrÞ; v

�
1ðrÞ; v

�
2ðrÞÞ to denote

the ESS as a function of r. Furthermore, we use r�1 prprþ1 to denote
a range of values of r for which v� is a boundary ESS with v�1 ¼ 1;
and we use rþ2 to denote a critical value such that v�2 ¼ 0 for
rcorprþ2 .

In the limit as r! 0, the probability of winning approaches 1
2

(because here we have set m ¼ 0), so that an ally should not help,
because his buddy is no more likely to win with his support than
without it. Correspondingly, v�0 rises toward 1 and v�1 falls toward
0 as r decreases toward rc . As reliability increases, however, the
probability of victory by a coalition increases. So allies should be
more inclined to help, and intruders should be less inclined to
challenge; correspondingly, v�2 should increase with r and either v�0
should decrease with r or v�1 should increase with r, or both.
The upshot is an increase with r at the ESS of the probability of
intervention conditional upon a challenge, i.e.,

pi ¼ ProbðX4v�0;Yov�1Þ ¼ f1� Gðv�0ÞgGðv
�
1Þ, (25)

where G is the distribution function defined by GðZÞ ¼
R Z

0 gðxÞdx.
This probability is also plotted as a function of r in Fig. 2.

We now consider the effects of varying parameters other than
r, using obvious modifications of our above notation for critical
values (e.g., �þ1 to denote a value below which v�1 ¼ 1). If there is
any risk of being usurped, then an ally should be less inclined to
help. Fig. 3 shows v� ¼ v�ð�Þ, i.e., the ESS as a function of �, for
three different values of r and the same fixed values of the other
seven parameters as in Fig. 2. Note that raising � only slightly
(from zero to �þ1 � 0:33� 10�2 if r ¼ 10) suffices for the boundary
ESS apparent in Fig. 2 to disappear. As � increases further, v�0ð�Þ
increases and v�1ð�Þ decreases until � reaches the critical value �c

above which there is no longer an ESS because v�0 has risen to 1:
intuitively, if the risk of usurpation is too high, then not even the
strongest neighbors should intervene.

The effect of varying elasticity of territorial pressure is
illustrated by Fig. 4, which shows v� ¼ v�ðyÞ for � ¼ 0:04, three
different values of r and the same fixed values of the other six
parameters as in Fig. 2. Note in particular how increasing y
increases the probability that an ally will help a larger buddy at
the ESS (because the dotted curve lies over the dashed one, and
the difference between them increases). Our ally does not want a
bigger neighbor who will enforce a smaller territory—far better to
see him off with the help of a neighbor before it even gets that
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Fig. 3. An example of the ESS as a function of �, the ally’s probability of usurpation, for �o�c, where �c � 0:171 for r ¼ 10, �c � 0:242 for r ¼ 50 and �c � 0:264 for r ¼ 250.

Fig. 4. An example of the ESS as a function of y, a measure of the elasticity of territorial pressure. In this case the ESS exists for all values of y (although it may not exist at

low y if m40, as illustrated by Fig. 10).

Fig. 5. An example of the ESS as a function of ownership advantage m for momc, where mc � 0:866 for r ¼ 10, mc � 0:924 for r ¼ 50 and mc � 0:966 for r ¼ 250.
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far—and the consequent reduction of territory would be larger for
larger values of y.

The effect of varying ownership advantage is illustrated by
Fig. 5, which shows v� ¼ v�ðmÞ for y ¼ 0:5 and the same fixed
values of the other seven parameters as in Fig. 4. Perhaps the most
noticeable consequences of increasing m are the increase in v�2 and
the sudden increase of v�0 as m! 1 when r is low. If m is large, and
if an ally does not help a larger buddy, and if the intruder wins
then, because of the influence of the resident’s advantage on the
outcome of the ownership contest, if reliability is high then it is
highly likely that the new neighbor is much stronger than the old
one and therefore likely to inflict a reduction of territory as well as
a re-negotiation cost, which together far outweigh the cost of the
intervention that would very likely have prevented it; however, at
low reliability and high owner advantage it pays only the
strongest allies to help.

The effect of varying sensitivity of cost to strength difference is
illustrated in Fig. 6, which shows v� ¼ v�ðkÞ for m ¼ 0 and the same
fixed values of the other seven parameters as in Fig. 5. Perhaps the
most surprising consequence of increasing k is that v�2 falls to zero
for sufficiently large k, denoted by k�2 : thereafter the ESS is a
boundary ESS. If k is very large, then the costs of an ownership
contest are negligible except for almost identically matched
opponents (see Fig. 1). Hence an intruder has very little to lose
by challenging and losing because two almost identical strengths
are very unlikely at maximum variance: we would therefore
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expect the threshold to go to zero at sufficiently high k. The
lower the value of r, the sooner the threshold goes to zero,
because the challenger’s chances of winning are higher when r is
lower.

The effect of varying synergicity is illustrated in Fig. 7, where it
is assumed that 1

2pqp3
2. The justification for qX1

2 is that effective
fighting strength should at least equal or exceed average fighting
strength. The justification for qp3

2 is that the strength difference
between a pair of average individuals and an individual of
maximum possible strength is qð12þ

1
2Þ � 1 ¼ q� 1, which should

not yield an advantage of more than the equivalent of one
individual of average strength. We see that v�0 decreases and v�1
increases with q: the higher the synergicity, the greater the range
of sizes of stronger allies who help and weaker neighbors who
receive help.

The effect of reducing variance is illustrated in Fig. 8. Intuition
suggests that, for a given mean (and with a symmetric Beta
distribution of strength on ½0; 1�, we assume the mean to be fixed
at 1

2), aggression thresholds should decrease with variance because
at higher variance an opponent is more likely to be stronger. This
intuition is confirmed in Fig. 8, in which v�2 increases with a, an
inverse measure of variance.
Fig. 7. An example of the ESS as a function of synergicity q for q4qc, where qc �

0:606 for r ¼ 10, qc � 0:579 for r ¼ 50 and qc � 0:576 for r ¼ 250.
6. Relative sizes of individuals in triad

Here we use the terms ‘‘strength’’ and ‘‘size’’ interchangeably,
because they both reflect an ability to win fights, although size is
often an easier character to measure empirically. Let plh denote
the probability that a resident in role B is larger (stronger) than
any challenger in role C at the ESS, conditional on being helped by
his neighbor in role A; and let pli denote the probability that a
resident in role B is larger than any challenger in role C at the ESS,
conditional on not being helped—or being ignored—by his
neighbor in role A. Then

plh ¼
ProbðX4v�0;Yov�1;Y4Z4v�2Þ

ProbðX4v�0;Yov�1; Z4v�2Þ
(26)

if v�14v�2 (as in Fig. 2), although plh ¼ 0 if v�24v�1 (as in Fig. 5 for
large m); and

pli ¼
ProbðXpv�0 or YXv�1;Y4Z4v�2Þ

ProbðXpv�0 or YXv�1; Z4v�2Þ
. (27)

These two probabilities are readily calculated, as described in
Appendix B.

If v�04v�1 at the ESS then an ally is inevitably stronger
than his buddy. If v�14v�0, however, then it is possible for the
buddy to be the stronger. Thus another probability of interest is
the probability that a buddy is larger at the ESS than an ally who
Fig. 6. An example of the ESS as a function of k, a measure of the sensitivity of fighti

k�2 � 19:8 for r ¼ 10, k�2 � 85:4 for r ¼ 50 and k�2 � 400 for r ¼ 250.
helps him, i.e.,

pba ¼
Probðv�14Y4X4v�0; Z4v�2Þ

ProbðX4v�0;Yov�1; Z4v�2Þ
(28)

(which is zero if v�0Xv�1). A related probability of interest is the
probability that an intruder is bigger at the ESS than an ally who
intervenes, namely,

pca ¼
ProbðZ4X4v�0;Yov�1; Z4v�2Þ

ProbðX4v�0;Yov�1; Z4v�2Þ
. (29)

These two probabilities are also readily calculated, again as
described in Appendix B. For an illustration, see Fig. 9. Note in
particular that allies are predicted to be larger than their buddies
unless the elasticity of territorial pressure is very high—in that
case it may even pay to help a stronger neighbor because a lot of
territory is up for renegotiation should the neighbor be usurped.
7. A case study: the Australian fiddler crab

One of the best-documented examples of territory holders
coming to the assistance of neighboring territory holders is seen
in the behavior of the fiddler crab Uca mjoebergi, which breeds in
mixed-sex colonies on inter-tidal mudflats in Australia (Backwell
and Jennions, 2004). Backwell and Jennions (2004) tracked 268
floaters until they saw them fight a resident. Only 17 of 268 cases
(6.3%) ended with an intervention, suggesting that it is a relatively
rare occurrence in these crabs (pi � 0:063). Here we examine the
wealth of behavioral data that has accumulated on this species
(and, as necessary, related species) with the aim of understanding
why the helping behavior occasionally arises.
ng costs to strength difference. Note that this is a boundary ESS for kXk�2 where
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Fig. 8. An example of the ESS as a function of a, an inverse measure of variance in fighting strength, for values of a between 1 (corresponding to maximum variance) and 30

(5% of maximum).

Fig. 9. Examples of relative-size probabilities for the ESS as a function of y (which measures elasticity of territorial pressure) and as a function of r (which measures

reliability of strength difference as a predictor of fight outcome). In the last panel, which corresponds to Fig. 2, the asymptotic probabilities that a helped buddy is larger

than a challenger, an ignored buddy is larger than a challenger, a helped buddy is larger than an ally and a challenger is larger than a helping ally asymptote to p1lh � 0:198,

p1li � 0:336, p1ba � 0:248 and p1ca � 0:576, respectively, as r!1.
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Owner’s advantage (m): Our model allows for the possibility of
an owner’s home advantage in that, all else being equal, the
probability of winning a territorial contest exceeds 1

2 simply by
virtue of prior ownership. The ownership advantage in fiddler
crabs is often considerable, and seems to come about by having
both a foothold and a retreat (Jennions and Backwell, 1996; Pratt
et al., 2003; Fayed et al., 2008). Backwell and Jennions (2004) note
that unassisted residents had the same median size as the
challengers (51% were bigger), yet unassisted residents won 71%
of fights, suggesting 1

2ð1þ mÞ � 0:71 or m � 0:42. This value is
somewhat lower than the ownership advantage that can be
calculated from other behavioral studies on the same species
(Morrell et al., 2005; Fayed et al., 2008), but it was derived from
observations made in the same place and time as the interven-
tions were observed and therefore considered particularly
appropriate.

Reliability of contest outcome (r): Over and above a residency
advantage, we have assumed that larger (or stronger) individuals
tend to win fights over smaller (or weaker) ones, although we
have also allowed for an element of chance through our reliability
parameter r. There is considerable evidence that, all else being
equal, larger crabs are more likely to win fights over smaller crabs,
for example in Ilyoplax pusilla (Wada, 1993), Uca annulipes

(Jennions and Backwell, 1996) and U. mjoebergi (Morrell et al.,
2005). Nevertheless, small individuals occasionally beat larger
individuals, particularly if the size difference is small, so the
outcome of these fights is not entirely predictable on the basis of
size. Figure 3 of Pratt et al. (2003, p. 949) provides a graphical
representation of the fitted relationship in Uca pugilator, in which
the probability of winning varies sigmoidally with the size
difference of the contestants; an analogous graph is Figure 2 of
Takahashi et al. (2001, p. 95). Visually comparing Pratt et al’s
graph with theoretical distributions (cf. Fig. 1b of this paper)
suggests an r value in the region of 10—certainly no less than 1,
and unlikely more than 100.

Cost of fighting as a function of size difference (k): Evidence that
more evenly size-matched opponents have longer (and presum-
ably more costly) fights is widespread in the fiddler crab
literature, e.g., in U. annulipes (Jennions and Backwell, 1996),
U. pugilator (Pratt et al., 2003) and U. mjoebergi (Morrell et al.,
2005). In all cases the duration of the contest is negatively
correlated with the absolute difference in size between contest-
ants, with the longest fights between closely matched individuals.
The size of k, a measure of the sensitivity of the fighting cost with
respect to strength difference, is challenging to estimate, but we
note that when individuals were one and two size-classes
different in size, then the mean durations of fights were about
25% and 15% of the duration when there was no size difference
(Pratt et al., 2003, Table 2) suggesting a value of k in the order
k ¼ 8 (Fig. 1). By contrast, the fitted model for contest duration (Y)
vs size difference (X;0pXp14) for U. mjoebergi was Y ¼ �0:57Xþ

19:56, suggesting a decline of only about 40% in fight duration
with maximum size difference, and therefore a value of k

considerably less than 2.
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Extent of synergy in coalitions (q): Backwell and Jennions (2004)
found that assisted residents were evicted during contests
significantly less often than unassisted residents (12% compared
to 29%), yet somewhat surprisingly the coalition did occasionally
fail to win. Taking into account the fact that the ally was generally
larger than the floater, then this suggests a value of q considerably
less than 1, otherwise two individuals (one with residency
advantage) would much more frequently beat off the intruder.

Elasticity of territorial pressure (y): Our model assumes a
decline in territorial pressure as the distance to the burrow
increases. In support, several studies have reported that male
fiddler crabs more vigorously defend their territories the closer
they are to them, e.g., in Uca terpsichores (Zucker, 1974) and Uca

vomeris (Hemmi and Zeil, 2003). We have also proposed that
larger individuals end up with larger territories. We can find few
observational data to confirm or refute this assertion, but the
fiddler crab Ilyoplax pusilla in Japan does show a positive
correlation between body size and territory size (Wada, 1993).
In short, we can say very little about the likely size of y. While we
suspect that y is non-zero (such that it is not completely
egalitarian), we also expect that it is considerably less than 1
(otherwise this asymmetry would likely have been reported).

Comparison of predictions with observations: The detailed
summary provided by Backwell and Jennions (2004) allows us
to estimate plh, pli, pba and pca as 0.06, 0.49, 0 and 0.18,
respectively, such that helped residents tended to be smaller than
the challenger (unassisted residents were sometimes larger and
sometimes smaller), and allies were always larger than the
challenger. Although our model was not intended as a specific
model of any particular system, it is reassuring that we can fit a
model with a plausible range of parameter values that simulta-
neously helps us understand both the relatively low incidence of
neighbor intervention and the various size relationships among
allies, buddies and challengers. Thus, assuming the above
parameter values and setting y such that pi ¼

17
268 produces

predicted probabilities plh, pli, pba and pca of 0, 0.46, 0, and 0.18,
respectively, which are not far from the actual estimates based on
observations. That many of the relevant parameters can be
directly estimated indicates that our model is reasonably well
grounded biologically. Note that there is nothing absolute about
plh ¼ 0 or pba ¼ 0: as Fig. 9 demonstrates, both probabilities can be
non-zero under the appropriate conditions.
Fig. 10. Another example of the ESS as a function of elasticity y of territorial

pressure for y4yc � 0:177 with associated relative-size probabilities. Here pi ¼
17

268

where y � 0:377, plh ¼ 0, pli � 0:464, pba ¼ 0 and pca � 0:176.
8. Discussion

We have used a game-theoretic model to establish that
intervention by stronger neighbors on behalf of weaker neigh-
bors—and sometimes stronger ones—can be evolutionarily stable
in the absence of any reciprocity. A general explanation for
this phenomenon was identified by Getty (1987) over 20 years
ago, and subsequently categorized by Mesterton-Gibbons and
Dugatkin (1992, p. 274) as an instance of by-product mutualism,
in which the resident incidentally benefits from the ally’s self-
interested intervention. Although our approach invokes the same
fundamental arguments as Getty (1987) in explaining neighbor
intervention, we have constructed a more elaborate and directly
parameterizable model, and we have incorporated effects that
Getty did not consider. Most importantly, we have explicitly
incorporated non-zero variance of strength; and we have
explicitly identified two separate components of the costs of re-
negotiation, i.e., fighting costs with a new neighbor and potential
loss of territory, the latter being strength-dependent.

Although the general argument that neighbor intervention
evolves to reduce renegotiation costs is appealing, formal
comparison of our discrete and continuous models shows that
neighbor intervention cannot be evolutionarily stable when
strength difference is a perfectly reliable predictor of fight
outcome (r! 1 in the discrete model, r!1 in the continuous
model) without variance in strength: for neighbor intervention to
be evolutionarily stable at perfect reliability, some individuals
must be better fighters than others. At perfect reliability in the
discrete model, the strategy ‘‘help as ally, challenge as intruder’’ is
invadable by ‘‘help as ally, don’t challenge as intruder’’ because all
challengers are destined to lose when facing a coalition; in turn,
‘‘help as ally, don’t challenge as intruder’’ is weakly invadable by
‘‘ignore as ally, don’t challenge as intruder’’ because there are no
longer any challengers. By contrast, the interventional ESS of the
continuous model with finite variance persists in the limit r!1

of perfect reliability, as illustrated by Fig. 2. We note in passing
that, at the other extreme, where strength difference is a
completely unreliable reliable predictor of fight outcome
(r! 1

2f1þ mg in the discrete model, r! 0 in the continuous
model), both models predict that helping is not evolutionarily
stable.

Here two remarks are in order. First, although in practice
reliability will never be perfect, we would expect the outcome at
perfect reliability to be an excellent approximation of the outcome
when reliability is merely high. Second, even if r ¼ 10 for Uca

mjoebergi is considered to be a relatively low value of reliability,
there are likely many other systems—even among crabs—in
which reliability is very much higher. Thus we expect that
variance of strength is in practice a far more important driver of
neighbor intervention than very low fighting cost—which, in the
absence of variance, is essentially what is required for (2) to hold
with imperfect reliability. In any event, because helping is
evolutionarily stable in the discrete model only if g1og0 by (2)
and (23) while in our continuous model we assumed g14g0, we
have clearly established that finite variance allows neighbor
intervention to be evolutionarily stable when the costs of fighting
are too high—relative to those of negotiation—to support an
interventional ESS in the absence of variance.

Nevertheless, helping neighbors is by no means a consistently
profitable strategy even when individuals vary in their fighting
strengths, and our model helps to identify these limits. For
example, if strength difference is a highly unreliable predictor of
the outcome of fights (r low, see Fig. 2), if the ally stands to lose its
own territory in the act of helping its neighbor (� high, see Fig. 3),
if coalition formation is highly antergic (q low, see Fig. 7), if there
is a very high probability that the resident wins simply because of
ownership (m high, see Fig. 5) or if there is a moderately high
probability that the resident wins because of ownership and
territorial pressure is highly inelastic (y very low, see Fig. 10), then
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neighbor intervention would not be expected to evolve. Con-
versely, as territorial pressure becomes more elastic ( y increases)
and the effect of strength difference on territory size increases
or the cost of fighting between mismatched opponents decreases
(k increases), individuals should be more liable to help one
another. The very fact that elasticity of territorial pressure
y so influences the outcome (see Fig. 4) demonstrates that the
decision to help a neighbor can be a consequence not only of
negotiation costs, but also of strength-dependent territorial
benefits.

Typically all three ESS thresholds in our model respond in a
consistent and predictable way to changes in any given parameter,
but at different rates, at least under the range of conditions
considered. For example, the principal effect of increasing �
(Fig. 3) is to increase the strength threshold v�0 beyond which a
potential ally should help its neighbor, and to reduce the strength
threshold v�1 below which a neighbor should be helped—as one
might expect, the threshold v�2 for the challenger is relatively
insensitive to �. By contrast, challengers have to be particularly
strong (v�2 high) to warrant a territory intrusion as the advantage
to ownership, m, increases (Fig. 5).

Our model also predicts a suite of conditional probabilities
based on the ESS thresholds identified, including the probabilities
that a helped or ignored resident is larger than a challenger (plh or
pli, respectively), and the probabilities that a resident or
challenger is larger than a helping ally (pba or pca, respectively).
Just as Backwell and Jennions (2004) have found, our model
generally predicts that plh is smaller than pli, so that helped
individuals are generally relatively small when compared to
unassisted individuals, although these two probabilities are equal
if v�1 ¼ 1 (as when r�1 prprþ1 in Fig. 2, see Appendix B). This
outcome can be understood on two levels—there is more to gain
from helping a weak neighbor (since the ally can continue to enjoy
a sizeable territory), and stronger neighbors can fend for
themselves, so there is less need to get involved. While Backwell
and Jennions (2004) observed that the ally was always larger than
the helped resident, and our predictions are broadly consistent
with this view under a range of plausible conditions, we have also
identified circumstances when strong allies should come to the
assistance of even stronger neighbors. Consider the consequences
of not helping a buddy when there is high reliability r and high
home advantage m. Clearly under these conditions any successful
challenger is likely to be much stronger than the former neighbor
and therefore likely to inflict both a significant reduction of
territory as well as a re-negotiation cost. Collectively these costs
may be sufficient to far outweigh the cost of the intervention that
would very likely have prevented it.

Our model was not based on reciprocal altruism, and indeed
the strength-dependent nature of the emergent helping rules
preclude such an outcome, just as reciprocal altruism has been
ruled out in the fiddler crab study (Backwell and Jennions, 2004).
Our model clearly supports earlier qualitative arguments that
individuals may experience selection to help neighbors under the
appropriate circumstances. Moreover, our formalization indicates
that such an outcome is particularly likely when the winner of
fights can be reliably predicted, the combined strength of the
coalition is greater than the sum of its parts, a high proportion of
the established territory is subject to renegotiation if the current
neighbor loses, the ally’s own probability of usurpation is low, and
there is low fighting advantage to territory ownership. Clearly, not
all systems will have these features. For example, damselflies and
dragonflies (Odonata) are highly territorial, frequently defending
adjoining territories from floating intruders. In these systems,
however, there may be both a very high home ownership advantage,
and a very high probability of losing one’s territory if one is away
fighting on behalf of a neighbor (e.g., see Corbet, 1999). Given the
complex dependency of intervention on these ecological and
behavioral parameters, we would therefore expect neighbor inter-
vention to be a patchily distributed taxonomic phenomenon.
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Appendix A. Calculation of the reward function and ESS

From (18) and Table 2 we obtain

f A ¼

Z 1

v2

gðzÞ

Z 1

0
gðxÞ

Z 1

0

1

2
byðy� zÞ � c0ðx; zÞ

� �
�pIðz� yÞgðyÞdy dx dz

þ

Z 1

v2
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Z 1

u0
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Z u1

0
ð1� �Þ

1

2
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��

�c0ðx; zÞ
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pIðz� qfxþ ygÞ

� f�bxðx; yÞ þ c21ðx; y; zÞg �
1

2
byðy� zÞ

�

�c0ðx; zÞ

�
pIðz� yÞ

�
gðyÞdy dx dz (A.1)

implying

qf A

qu0
¼ � gðu0Þ

Z 1

v2

gðzÞ

Z u1

0
ð1� �Þ

1

2
byðy� zÞ � c0ðu0; zÞ

� ��
�pIðz� qfu0 þ ygÞ

� f�bxðu0; yÞ þ c21ðu0; y; zÞg �
1

2
byðy� zÞ

�

�c0ðu0; zÞ

�
pIðz� yÞ

�
gðyÞdy dz (A.2)

and

qf A

qu1
¼ gðu1Þ

Z 1

v2

gðzÞ

Z 1

u0

ð1� �Þ
1

2
byðu1 � zÞ

��

�c0ðx; zÞ

�
pIðz� qfxþ u1gÞ
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�
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�
pIðz� u1Þ

�
gðxÞdx dz (A.3)

after simplification. Also, from (19) and Table 3 we obtain

f C ¼

Z 1

u2

gðxÞ

Z 1

0
gðyÞ

Z 1

0
fpIðx� yÞfbxðx; zÞ

� c0ðx; zÞg � c1ðx; yÞggðzÞdz dy dx

þ

Z 1
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0
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Z 1

v0

ffpIðx� qfyþ zgÞ � pIðx� yÞg

�fbxðx; zÞ � c0ðx; zÞg � c12ðx; y; zÞ þ c1ðx; yÞggðzÞdz dy dx (A.4)

implying

qf C
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Z 1

0
gðyÞ

Z 1

0
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gðyÞ

Z 1

v0
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)
. (A.5)
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Strategy v is a strong ESS in the sense of Maynard Smith (1982) if v

uniquely maximizes f ðu; vÞ defined by (17) as a function of u (see,
e.g., Mesterton-Gibbons, 2001). Accordingly, for an interior ESS we
require the gradient of f to vanish and the Hessian of f to be
negative-definite at u ¼ v (see, e.g., Luenberger, 1984), where the
Hessian HðuÞ of f is the symmetric matrix defined by Hij ¼

q2f=quiquj for i; j ¼ 0;1;2. On setting u0 ¼ v0, u1 ¼ v1 and u2 ¼ v2

in (A2), (A3) and (A5) and changing the integration variable x in
(A.3) to y, it follows that (20) implies (22) because gðsÞa0 for
s 2 ð0;1Þ. Moreover, using w01ðvÞ to denote q2f A=qu0qu1ju0¼v0 ;u1¼v1

,
from (A2) and (A3) and (A5) with (15), (13), (8), (10) and (21) we
obtain
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w01ðvÞ ¼ � gðv0Þgðv1Þ
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and

w2ðvÞ ¼ � g0ðu2Þ

Z 1

0
gðyÞ

Z 1

0
fpIðu2 � yÞfbxðu2; zÞ � K0g

(
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þ
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0
gðyÞ

Z 1

v0
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1
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þ

Z v1
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gðyÞ

Z 1

v0

ffp0Rðqfyþ zg � u2Þ � p0Rðy� u2Þgfbxðu2; zÞ

� K0g þ K 0ðu2 � yÞ
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1
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byfpIðu2 � qfyþ zgÞ � pIðu2 � yÞg � K 0ðu2 � qfyþ zgÞg
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, (A.9)

where primes denote differentiation with respect to argument, i.e.,

from (6), (10) and (12), p0RðDsÞ ¼ �41�2r
f4� jDsj2gr�1 lnð12f1þ mgÞ

pRðDsÞ=fBð12þ
1
4Ds; r; rÞ lnð2Þg and K 0ðDsÞ ¼ �1

2kK1Dsf1� 1
4 jDsj2gk�1.

From (17) and (21) the Hessian at u ¼ v is

HðvÞ ¼

qAw0ðvÞ qAw01ðvÞ 0

qAw01ðvÞ qAw1ðvÞ 0

0 0 qCw2ðvÞ

2
64

3
75 (A.10)

with eigenvalues l0, l1, l2 where l0 and l1 are the roots

of the quadratic equation l2
� qAfw0ðvÞ þ w1ðvÞgl� q2

Aw3ðvÞ ¼ 0,

l2 ¼ qCw2ðvÞ and

w3ðvÞ ¼ w01ðvÞ
2
� w0ðvÞw1ðvÞ. (A.11)

Because l0 þ l1 ¼ qAfw0ðvÞ þ w1ðvÞg and l0l1 ¼ �q2
Aw3ðvÞ, HðvÞ has

negative eigenvalues when all components of the vector wðvÞ ¼
ðw0ðvÞ;w1ðvÞ;w2ðvÞ;w3ðvÞÞ are negative; then v defined by (22)

uniquely maximizes f ðu; vÞ and is therefore a strong ESS.
To illustrate: in Fig. 2 for r ¼ 50 the ESS is v ¼

ð0:4110;0:9613;0:4268Þ with w0ðvÞ=b ¼ �0:1134, w1ðvÞ=b ¼

�0:2067� 10�1, w2ðvÞ=b ¼ �0:1786 and w3ðvÞ=b ¼ �0:2238�

10�2, where b denotes the marginal value of territory expansion.
(Strictly speaking, the negativity of wðvÞ guarantees only a local
maximum; however, it is readily verified by numerical means that
the maximum is unique and hence the ESS is global.)

For a boundary ESS, necessary conditions (20) must be

modified appropriately. If v�i ¼ 0 for some i, then qf=quiju¼v� ¼ 0

becomes qf=quiju¼v�p0; and if v�i ¼ 1 for some i, then

qf=quiju¼v� ¼ 0 becomes qf=quiju¼v�X0. Suppose, for example,
that v ¼ ðv0; v1;0Þ with 0ov0; v1o1 is a boundary ESS on the
bottom face of the strategy cube where u2 ¼ 0. Then in place of

(20) we require qf A=qu0 ¼ 0 ¼ qf A=qu1 and qf C=qu2p0 for u0 ¼ v0,

u1 ¼ v1 and u2 ¼ 0. When v0 and v1 satisfying qf A=qu0 ¼ 0 ¼

qf A=qu1 have been found numerically, we still require w0ðvÞo0,

w1ðvÞo0 and w3ðvÞo0 for v ¼ ðv0; v1;0Þ to yield a maximum on the

boundary; however, w2ðvÞo0 is replaced by qf C=qu2ju2¼0o0 unless

qf C=qu2ju2¼0 ¼ 0 (which, by (4) and (A5), holds for all a41, i.e.,

for any non-uniform distribution), in which case we still
require w2ðvÞo0. To illustrate: in Fig. 2 for r ¼ 3 the ESS is

v ¼ ð0:8263;0:5528;0Þ with w0ðvÞ=b ¼ �0:6475� 10�1, w1ðvÞ=b ¼

�0:7996� 10�2, w2ðvÞ=b ¼ �0:3874� 10�1, w3ðvÞ=b ¼ �0:4852�

10�3 and qf C=qu2ju2¼0=b ¼ �0:4057� 10�2. (We note in passing

that the critical value rþ2 is found by setting v2 ¼ 0 in (20) and

solving for v0, v1 and r; likewise with v1 ¼ 1 for r�1 and rþ1 .)

Similarly, for v ¼ ðv0;1; v2Þ with 0ov0; v2o1 to be a boundary ESS
on the back face of the strategy cube where u1 ¼ 1 we require

qf A=qu0 ¼ 0 ¼ qf C=qu2 and qf A=qu1X0 for u ¼ v ¼ ðv0;1; v2Þ with

w0ðvÞo0, w2ðvÞo0 and either qf A=qu1ju1¼140 (for a ¼ 1) or

qf A=qu1ju1¼1 ¼ 0 and w1ðvÞo0 (for a41). To illustrate in Fig. 2

for r ¼ 10 the ESS is v ¼ ð0:5172;1;0:2732Þ with w0ðvÞ=b ¼

�0:1076, w1ðvÞ=b ¼ �0:1275� 10�1, w2ðvÞ=b ¼ �0:1251, w3ðvÞ=b ¼

�0:1325� 10�2 and qf C=qu2ju2¼0=b ¼ 0:4414� 10�3.

As for the left-hand face of the strategy cube where u0 ¼ 0:
although v1 and v2 satisfying qf A=qu1 ¼ 0 ¼ qf C=qu2 with u0 ¼ 0,
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u1 ¼ v1 and u2 ¼ v2 may be found numerically, we obtain
qf A=qu0ju0¼040 for a ¼ 1 and qf A=qu0ju0¼0 ¼ 0, q2f A=qu2

0ju0¼040
for a41. Thus no boundary ESS of the form v ¼ ð0; v1; v2Þ exists. A
different argument establishes that there are no ESSs on either the
front face of the cube where u1 ¼ 0 or the right-hand face where
u0 ¼ 1. Let an overbar denote that strategy u lies on either of these
two faces, i.e., either u1 ¼ 0 or u0 ¼ 1. Then v cannot be a strong
ESS, because, from (17), (A1), and (A4), for any u ¼ ðu0;u1; v2Þ we
have f ðu; vÞ ¼ qA f Aðu0;u1; v2Þ þ qC f Cðv0; v1; v2Þ ¼ qA f Aðu0;u1; v2Þþ

qC f Cðv0; v1; v2Þ ¼ f ðv; vÞ, so that uav exist for which f ðv; vÞ fails
to exceed f ðu; vÞ. It is still possible for v to be a weak ESS, which
requires f ðv;uÞ4f ðu;uÞ for all such u (see, e.g., Mesterton-Gibbons,
2001). But here f ðu;uÞ ¼ qA f Aðu0;u1; v2Þ þ qC f Cðu0;u1; v2Þ ¼

qA f Aðv0; v1; v2Þ þ qC f Cðu0;u1; v2Þ ¼ f ðv;uÞ from (A.1), so that f ðv;uÞ

fails to exceed f ðu;uÞ and even a weak ESS is ruled out. A similar
argument applies to the top face where u2 ¼ 1: there cannot be an
ESS of the form v ¼ ðv0; v1;1Þ because for any u ¼ ðu0;u1;1Þ we
have both f ðu; vÞ ¼ f ðv; vÞ, which rules out a strong ESS, and
f ðu;uÞ ¼ f ðv;uÞ, which rules out a weak one. In sum, by a
combination of numerical experiment and analytical argument,
we conclude that the only boundary ESSs are of the form v ¼

ðv0; v1;0Þ or v ¼ ðv0;1; v2Þ. We note in passing that, although it may
well be true that the weak-ESS condition ‘‘rarely applies to
continuous games’’ (McGill and Brown, 2007, p. 408), it some-
times plays a critical role.
Appendix B. Calculation of relative-size probabilities

From (26), the probability that a resident in role B is larger than
a challenger in role C at the ESS, conditional on being helped by
his neighbor in role A, is

plh ¼¼

R v�
1

v�
2

gðyÞ
R y

v�
2

gðzÞdz dyR v�
1

0 gðyÞ
R 1

v�
2

gðzÞdz dy
(B.1)

if v�14v�2 (as in Fig. 2), although plh ¼ 0 if v�24v�1 (as in Fig. 8 for
low variance and intermediate reliability); and from (27), the
probability that a resident in role B is larger than a challenger in
role C at the ESS, conditional on being ignored by his neighbor in
role A, is

pli ¼
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(B.2)

For example, with a uniform distribution (as in Figs. 2–7 and
9–10) we obtain

plh ¼
ðv�1 � v�2Þ

2

2v�1ð1� v�2Þ
; pli ¼

1� ð2� v�0v�2Þv
�
2 þ ð2v�2 � v�1Þð1� v�0Þv

�
1

2ð1� f1� v�0gv
�
1Þð1� v�2Þ

(B.3)

if v�14v�2 but plh ¼ 0 and pli ¼ ð1� v�2Þ=f2ð1� f1� v�0gv
�
1Þg if v�24v�1.

Note that (B1) and (B2), and hence the two expressions in
(B.3), are identical if v�1 ¼ 1 (as when r�1 prprþ1 in Fig. 2; see
Fig. 9).
From (28), the probability that a buddy is larger at the ESS than
an ally who helps him is

pba ¼

0 if v�1pv�0;R v�
1

v�
0

gðxÞ
R v�

1
x gðyÞdy dxR 1

v�
0

gðxÞdx
R v�

1

0 gðyÞdy
if v�14v�0:

8>>><
>>>:

(B.4)

In particular, for a uniform distribution, if v�14v�0 then
pba ¼ ðv

�
1 � v�0Þ

2=2v�1ð1� v�0Þ. Finally, from (29), the probability
that an intruder is bigger at the ESS than an ally who intervenes is

pca ¼

R 1
v�

0
gðxÞ

R 1
x gðzÞdz dxR 1

v�
0

gðxÞdx
R 1

v�
2

gðzÞdz
if v�2pv�0;

R 1
v�

2
gðzÞ

R z
v�

0
gðxÞdx dzR 1

v�
0

gðxÞdx
R 1

v�
2

gðzÞdz
if v�24v�0:

8>>>>>>><
>>>>>>>:

(B.5)

In particular, for a uniform distribution,

pca ¼

1

2

1� v�0
1� v�2

if v�2pv�0;

ð1� 2v�0 þ v�2Þ

2ð1� v�0Þ
ifv�24v�0:

8>>><
>>>:

(B.6)

Note that pca ¼
1
2 when v�0 ¼ v�2 (for any distribution).
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