
 10.1101/gr.070227.107Access the most recent version at doi:
 2008 18: 763-770 originally published online January 22, 2008Genome Res.

 
William Brockman, Pablo Alvarez, Sarah Young, et al.
 
systems
Quality scores and SNP detection in sequencing-by-synthesis
 
 

Material
Supplemental  http://genome.cshlp.org/content/suppl/2008/03/18/gr.070227.107.DC1.html

References

 http://genome.cshlp.org/content/18/5/763.full.html#related-urls
Article cited in: 
 

 http://genome.cshlp.org/content/18/5/763.full.html#ref-list-1
This article cites 9 articles, 5 of which can be accessed free at:

service
Email alerting

 click heretop right corner of the article or
Receive free email alerts when new articles cite this article - sign up in the box at the

 http://genome.cshlp.org/subscriptions
 go to: Genome ResearchTo subscribe to 

Copyright © 2008, Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on January 7, 2011 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/doi/10.1101/gr.070227.107
http://genome.cshlp.org/content/suppl/2008/03/18/gr.070227.107.DC1.html
http://genome.cshlp.org/content/18/5/763.full.html#ref-list-1
http://genome.cshlp.org/content/18/5/763.full.html#related-urls
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genome;18/5/763&return_type=article&return_url=http://genome.cshlp.org/content/18/5/763.full.pdf
http://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com


Quality scores and SNP detection
in sequencing-by-synthesis systems
William Brockman,1,3,4 Pablo Alvarez,1,3,5 Sarah Young,1 Manuel Garber,1

Georgia Giannoukos,1 William L. Lee,1 Carsten Russ,1 Eric S. Lander,1,2

Chad Nusbaum,1 and David B. Jaffe1,6

1Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA; 2Whitehead Institute for Biomedical Research,
MIT, Cambridge, Massachusetts 02139, USA

Promising new sequencing technologies, based on sequencing-by-synthesis (SBS), are starting to deliver large amounts
of DNA sequence at very low cost. Polymorphism detection is a key application. We describe general methods for
improved quality scores and accurate automated polymorphism detection, and apply them to data from the Roche
(454) Genome Sequencer 20. We assess our methods using known-truth data sets, which is critical to the validity of
the assessments. We developed informative, base-by-base error predictors for this sequencer and used a variant of the
phred binning algorithm to combine them into a single empirically derived quality score. These quality scores are
more useful than those produced by the system software: They both better predict actual error rates and identify
many more high-quality bases. We developed a SNP detection method, with variants for low coverage, high
coverage, and PCR amplicon applications, and evaluated it on known-truth data sets. We demonstrate good
specificity in single reads, and excellent specificity (no false positives in 215 kb of genome) in high-coverage data.

[Supplemental material is available online at www.genome.org.]

Although the cost of DNA sequencing by Sanger chemistry has
dropped dramatically over the past decade, this cost is still too
high for many important research projects to be practical. Several
new methods based on sequencing-by-synthesis (SBS) promise to
yield large amounts of DNA sequence at dramatically lower cost
and thus open new areas to research. However, current SBS reads
are much shorter than Sanger chemistry reads (e.g., from the ABI
3730) and are of lower quality per base.

Indeed, SBS data differ fundamentally from the now-
familiar data produced using Sanger sequencing chemistry, and
these differences significantly impact many applications of the
data. For example, the 454 system (Margulies et al. 2005) does
not read individual bases directly. Rather, it reads the lengths of
homopolymer runs: the number of As, Cs, Gs, or Ts at the current
position. As a consequence, the typical read errors are overcalls
and undercalls (insertions or deletions of bases from the se-
quence), in contrast to the miscall errors typical of Sanger chem-
istry sequencing. As another example, the Illumina/Solexa sys-
tem produces data in four color channels, one for each base. The
intensity of each color reflects the proportion of molecules in-
corporating that base. Miscalls are the most common errors. The
very short reads it currently produces (25–50 b) require special
tools. In general, new SBS systems are unlikely to produce data
that can function as drop-in replacements for Sanger chemistry
reads.

A common language is essential to compare results from
different systems and to make sensible decisions about which
sequencing method is suitable to each application. This problem

has been solved for Sanger chemistry sequencing: Reliable, vali-
dated base quality scores (also known as Q scores) provide a stan-
dard with which to compare data. Originating with the phred
program (Ewing and Green 1998; Ewing et al. 1998), they are
virtually universally used and have become a critical tool for
comparing results. Other basecallers such as LifeTrace (Walther et
al. 2001) and KB (Applied Biosystems, Inc. 2004) also produce
phred-like quality scores. The quality scores compress a variety of
types of information about the quality of basecalls into a readily
usable probability-of-error value. Many analysis tools and virtu-
ally all assemblers require quality score input to deliver accurate
results. To date, the vendor-generated quality scores for available
SBS systems have fallen short as substitutes for phred quality
scores; for instance, 454 quality scores by design do not address
the probability of undercall errors (Margulies et al. 2005). Accu-
rate quality scores with properties similar to those generated by
phred are essential to provide a simple uniform foundation on
which to build all applications that are concerned with read qual-
ity. In particular, they will: (1) facilitate the creation of meaning-
ful quality scores for assemblies; (2) support sensitive and specific
polymorphism detection; (3) enable accurate statistical modeling
of the significance of read alignments; (4) provide a quantitative
basis for comparison of sequencing results from different tech-
nologies or laboratories; and (5) provide a quantitative founda-
tion for the joint use of sequence from SBS technologies and
Sanger chemistry methods.

Polymorphism detection will be a key application of the
new SBS technologies but will present new problems and require
new solutions. Because of the high volume of data, the data
analysis steps must be fully automated. There are several key
considerations in the design of polymorphism detection algo-
rithms and experiments. First, individual bases are currently of
lower quality than are typical Sanger chemistry bases, which
means it is difficult to obtain high specificity in detecting poly-
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morphisms. Second, since these technologies sequence hundreds
of thousands to millions of reads from one sample, in many cases
samples must be pooled for efficiency. Such pooling inevitably
leads to concentration differences between the different samples,
affecting the sensitivity of the assay. Finally, PCR is typically used
to select regions of interest for targeted sequencing, but this can
lead both to bias (because some regions are amplified more
readily than others) and also to miscalls due to polymerase errors.
This last problem is more serious for SBS technologies: consider a
PCR process that yields 99% perfect copies of the original tem-
plate. In sequencing of a PCR product by Sanger chemistry, all
molecules are sequenced together, so the result is an average of
the signal for each molecule: that is, the 1% error merely adds a
small amount of noise. On the other hand, each SBS read is
derived from a single DNA molecule, so that the polymerase error
rate has a direct impact on the overall error rate of the system:
Even absent any sequencing error, 1% of the molecules will be
read incorrectly.

In this report, we address these issues and give examples of
successful applications of these new technologies in automated
polymorphism detection. We define more accurate quality scores
and apply them to help overcome the challenges described
above. The software described here is publicly available (Supple-
mental materials). Because the 454 platform was the first SBS
technology available, our data are from that source.

Quality score generation

In order to develop quality scores for SBS data, it is essential to
understand the common error patterns in the data, which arise
from the idiosyncrasies of each individual SBS platform. Once
these are understood, measures can be developed that capture
predictors of possible errors. Then the predictors can be com-
bined to yield a single accurate probability of error that can be
expressed as a quality score.

To combine the error predictors that we developed, we used
the same algorithm first used in phred for Sanger chemistry data
(Ewing and Green 1998). Applying this algorithm to large train-
ing data sets (see Supplemental Table 1), for which the true se-
quence of the DNA is known, yields a table that summarizes the
expected quality for bases with different combinations of the
error predictors. This table can then be readily applied to new
sequencing runs to produce quality scores.

Error predictors for 454 data

Processed data from the 454 platform present as a flowgram: a
series of intensity values for successive reagent “flows.” During
each flow, the incorporation of zero, one, or more instances of a
single base is possible. Each flow corresponds to one of the four
bases, and they repeat in a predetermined order called a flow-
cycle. The signal intensity for a flow is rounded to an integer to
give the number of monomers of the corresponding base that
were incorporated. For example, the flowgram (T:1.1, A:0.1,
C:0.9, G:0.1, T:1.6, A:0.0, C:0.4, G:1.0) would correspond after
rounding to the sequence TCTTG. A read error occurs whenever
the signal intensity is more than 0.5 from the true value: for
example, interpreting 1.6 as a 2 when there was only one base, or
0.4 as a 0 when there really was a base at that position. Therefore
most errors are overcalls (65%–75% of read errors) or undercalls
(20%–30%). Miscalls are much rarer (∼5% of errors) and are typi-
cally due to undercall/overcall pairs (e.g., the flowgram above

might be a miscall of the true sequence TCTCG due to an over-
called T and undercalled C).

The quality score assigned to a base by the 454 software
represents the probability that the base is an overcall, given the
observed signal intensity for the corresponding flow; it is com-
puted from the signal distributions observed in the run (Margu-
lies et al. 2005). However, noise in this system comes from a
variety of sources, many of which vary within the run: optical
and chemical noise, multiple templates on a bead, signal con-
tamination from nearby wells, and loss of synchrony between
the ∼107 copies of the template that are on each bead (Margulies
et al. 2005). To explain this last point: In any flow, some small
fraction of DNA strands will fail to incorporate the appropriate
base (e.g., in an A flow, incorporating two As instead of three).
Others may incorporate too many bases (e.g., in an A flow incor-
porating a stray T nucleotide). As a result, signal intensity is
transferred from one flow to another, typically to the previous or
the next flow of the same base; loss of synchrony accumulates
throughout the read.

To capture these diverse sources of sequencing error, we de-
vised six noise predictors as input to our quality-scoring algo-
rithm. While the algorithm relies on multidimensional combi-
nations of predictor thresholds to achieve its accuracy, it is pos-
sible to roughly rank the predictors by importance. The following
list is from most to least important:

1. Observed noise in the neighborhood of a given flow
2. Observed noise in the whole read
3. Observed noise at a given flow
4. Homopolymer count: having more bases to incorporate in a

flow yields more errors
5. Homopolymer count for the same flow in the previous flow-

cycle; a long base run induces errors via synchrony loss and
partial transfer of its strong signal to subsequent flows

6. Position on read: later in read yields more errors

In contrast, the 454 quality-score algorithm has less power
because it uses only the homopolymer count and noise level at a
given flow. In addition, it assigns scores that decline steadily
across a homopolymer run, whereas to maintain consistency
with prior scoring methods, our algorithm generally assigns the
same score to all bases in a run.

We used extensive known-truth 454 GS20 sequence data to
assess the effectiveness of our algorithms for SNP calling and
quality scoring.

Results

Accuracy, usefulness, and consistency of quality scores

We produced a quality score table as described above by training
on four data sets of 454 data from four genomes, with a total of
58 Mb (Supplemental Table 1). We then used the table to gener-
ate quality scores for 13 additional test data sets from five ge-
nomes, with a total of 200 Mb (Supplemental Table 2), and com-
pared the resulting quality scores to those produced by the 1.0.52
version of the 454 software. For simplicity, we will refer to the
former as “new quality scores” and the latter as “old quality
scores.” The genomes used all had pre-existing high-quality ref-
erences (either finished genomes or the high-quality portions of
draft genomes), which is critical for comparing quality scores.

To measure quality, we selected reads with a unique align-
ment having at least 80% identity. For each predicted quality
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score, we tabulated the total number of bases and the number of
errors, charging undercall errors to the neighboring base with the
lower quality score. This computation gave us an error rate for
each predicted quality score (5 through 35), or equivalently an
observed quality score (Q = �10 log10[error rate]). Figure 1A
shows the relationship between the predicted and observed qual-
ity scores aggregated across the 13 data sets. The new scores
clearly better predict actual quality than do the old scores.

An effective measure of the predictive ability of quality
scores is the R2 with respect to the ideal relationship of identity
(y = x). This measure, R2i, shows a strong difference between the
new quality scores (R2i = 0.99) and the old ones (R2i = 0.94).

An effective measure of the usefulness of predictive quality
scores is their success at identifying high-quality bases (Ewing
and Green 1998). The new quality scores correctly identify many
more bases at Q30 or higher than do the old ones, 61% versus
23% (Fig. 1B).

The new quality scores are designed to treat overcalls, un-
dercalls, and miscalls evenhandedly. As Figure 1C shows, they
provide similarly accurate information about each, in contrast to
the old scores. As expected, the improvement is particularly strik-
ing for undercalls and miscalls, because the old quality scores
were only designed to reflect the probability of an overcall (Mar-
gulies et al. 2005).

It is also important to evaluate to
what extent the new quality scores are
stable across machines. This stability
would minimize training requirements
by allowing a single quality table to
serve for many machines. For three runs
produced on three different machines at
the Broad Institute, with the same librar-
ies of human BACs, the actual quality
was consistently slightly better than pre-
diction: R2i = 0.99, 0.95, 0.96 (Fig. 1D).

Finally, a key question is whether
the quality scores provide similarly reli-
able information for genomes with dif-
ferent characteristics. We evaluated the
quality scores on five genomes having
diverse GC and homopolymer content,
finding similar levels of predictive
power: R2i = 0.96–0.99 (Table 1; Fig. 1E).

Detection of single-nucleotide
polymorphisms

We developed a method for automated
single-nucleotide polymorphism (SNP)
detection making use of our new quality
scores. In outline, the method is
straightforward:

1. Align reads to reference
2. Accept unambiguous reads with ad-

equate identity
3. Select Neighborhood Quality Stan-

dard (NQS) windows (Altshuler et al.
2000; International SNP Map Work-
ing Group 2001) within accepted
reads

4. Call SNPs when sufficient evidence is
found

We evaluated the method for three
SNP discovery contexts: low-coverage
genomic data, high-coverage genomic
data, and PCR amplicon data. In these
different contexts, we used different
standards (described below) for the SNP
evidence, but otherwise we used a con-
sistent method. In more detail: (1) Align-
ment was done with QueryLookupTable
(Methods). (2) We ignored alignments
having <80% identity. We scored align-

Figure 1. New quality scores for 454 reads. Old: quality scores from 454 software v.1.0.52. New:
quality scores developed for this work. Data for panels A, B, and C come from 13 different runs on DNA
from five different species. (A) Predicted vs. observed quality for old and new quality scores. New
quality scores are much closer to the ideal, 1:1 line. (B) Proportion of bases greater than a given actual
quality. The new quality scores accurately identify many more bases at quality �30 (63% vs. 23%). (C)
Error prediction by error type. New quality scores accurately predict different types of errors: predicted
vs. actual quality when errors are separated into overcalls, undercalls, and miscalls. (D) New quality
scores are stable across machines. Predicted vs. actual quality for three runs of the same human BAC
library on three different machines. (E) New quality scores are stable across genomes. Predicted vs.
actual quality for five genomes varying in GC content and proportion of bases in homopolymers.
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ments by adding indels plus mismatches, and declared a read
ambiguous if the score for its best alignment exceeded one-fourth
of the score of the second-best. (3) We required 11-base NQS
20/15, i.e., quality 20 at the central base, and a window of five
bases on each side with quality 15. We allowed at most two
mismatches and zero indels in the window.

In each context, we evaluated the method using reads from
genomes of known sequence, which is vital for an unambiguous
determination of specificity.

Low coverage SNP discovery with single reads

One important way to generate a low-cost sample of SNPs from
an entire genome is to call SNPs from very low coverage reads
(e.g., 0.01�). In this context our method calls all SNPs found in
an NQS window in an accepted read. To assess SNP calling using
single 454 reads, we chose a set of six finished human BACs as a
practically sized, thoroughly known target. We generated three
mutated references for each BAC by applying sets of synthetic
SNPs randomly selected from SNPs found in the human reference
regions corresponding to these BACs (Methods). We separately
analyzed five data sets (Methods; Supplemental Table 3), calling
SNPs against each of the three references. Thus we carried out 15
experiments, each of which had ∼70,000 reads. On average, for
each read landing on a SNP, the sensitivity (probability of report-
ing the SNP) was 60%–73%. There were 55–72 false positives per
million bases (Mb) accepted for SNP calling. For context, the SNP
rate in humans is estimated at ∼1000 per Mb of genome (Inter-
national HapMap Consortium 2003), and the false-positive rate
of an analogous SNP-discovery method using Sanger chemistry-
based whole-genome shotgun reads is ∼30 per accepted Mb (In-
ternational SNP Map Working Group 2001).

To estimate the benefit from using quality information, we
compared SNP calling without quality filtering (NQS 0/0). This
gave sensitivity of 85%–93% but a false-positive rate of 97–233/
Mb called, showing that using quality information both im-
proves specificity and makes it more consistent.

In contrast, higher-quality bases (NQS 30/30) did not sig-
nificantly improve on the false-positive rate of ∼65/Mb. This re-
sult is consistent with Figure 1C, which shows in a different data
set that the highest quality bases (measured by either old or new
quality scores) show miscall errors at ∼50/Mb.

High coverage genomic SNP discovery

We set out to do comprehensive SNP calling with very high speci-
ficity (<10 false positives/Mb) using high coverage sequence
reads. In this context, we required the evidence for a SNP to (1)
include reads in both directions and (2) display frequency above
a certain threshold among all SNP-calling-accepted bases at that
position. The thresholds were arbitrarily set at 66% for haploid

and 10% for diploid genomes, but the results are reasonably ro-
bust to the choice of threshold: between 60% and 70% for hap-
loid and between 5% and 15% for diploid produce virtually the
same results.

To test haploid SNP discovery, we used the finished human
BAC reads described above, which are a high coverage shotgun
data set. In this case we divided the accepted reads into groups for
each of the six BAC targets, using the same criteria for read ac-
ceptance as before.

To test diploid SNP discovery, we used the fact that the BACs
were chosen in overlapping pairs. Thus, reads from the overlap
regions can be used to simulate shotgun reads from a diploid
genome containing natural heterozygous SNPs (Methods).

In both cases, we simulated various levels of coverage (Meth-
ods) by randomly sampling the reads. For each target, the cov-
erage was measured as the ratio of the number of SNP-calling-
accepted bases for that target to the number of bases in the target.

Haploid genomic results

We assessed SNP calling in this case by calling SNPs against the
same three mutated references (total size, 544 kb). At all tested
coverage levels (Methods), this algorithm produced no false posi-
tives. (A 95% confidence interval is at most eight false positives
per Mb; i.e., for false-positive rates above 8/Mb, the likelihood of
observing zero false positives is <5%.)

As shown in Figure 2, at 20� coverage, we observe 94%
sensitivity with little gain at higher coverage. Of the missing 6%
of SNPs, ∼75% are lost due to systematic sequence-dependent
variation in the read quality. For example, the predicted quality
is lower near long homopolymers. Repeat regions and coverage
variation account for the remaining ∼25% of losses. It is impor-
tant to note that the loss-of-sensitivity effects of these three fac-
tors depend on sequence context, so the impact of each will vary
greatly between different genomes. We observed a sensitivity
range (at 20�) from 90% to 97% for these BACs.

Diploid genomic results

We assessed discovery of heterozygous SNPs in diploid genomes
by applying this method to a computationally simulated mixture
of reads from overlapping pairs of human BACs. In total, the
three BAC pairs tested contained 222 heterozygous positions in
the ∼215 kb of overlap. Again we found no false positives in the
test region at any coverage level. As shown in Figure 2, at 20�

diploid coverage (i.e., an average of 10� per allele, stochastically
varying) we find ∼93% sensitivity for heterozygous SNPs. We
found sensitivity of 84%, 92%, and 98% for the three overlap
regions, confirming the expectation that sensitivity depends sig-
nificantly on the sequence context of SNP placement in the tar-
get genome. Higher coverage gives somewhat better results, e.g.,
at 30� we found 88% sensitivity for the most difficult region.
About half of the ∼7% of SNPs not found at 20� are in difficult-
to-align regions (repetitive or highly polymorphic), while most
of the rest are lost to coverage variation. The systematic loss of
coverage quality described above made little contribution for this
set of SNPs.

Note that the 215 kb of overlap regions serves as the simu-
lated genome for this test. Sensitivity depends, among other fac-
tors, on the repeat content of the genome. As an example, we also
analyzed these regions in the context of the entire genome (re-
moving reads ambiguous in that context). For two of the three

Table 1. Quality score comparison across genomes

Genome GC content Homopolymer contenta R2i

H. sapiens BACs 44% 4.3% 0.97
L. monocytogenes 38% 4.9% 0.99
P. aeruginosa 66% 0.6% 0.97
B. thailandiensis 68% 0.5% 0.99
F. tularensis 32% 4.8% 0.96

aPercentage of bases that appear in homopolymer runs of length �5
bases.
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regions, sensitivity at 20� coverage was unchanged, but for the
most difficult one, sensitivity dropped from 84% to 74%.

SNP discovery in high coverage PCR amplicons

The cost of a project can be reduced by sequencing targeted re-
gions of the genome in PCR amplicons rather than the entire
genomic DNA. To evaluate the effectiveness of our method on
454 reads from PCR amplicons, we designed PCR amplicons to
cover known heterozygous SNPs in human DNA. We sequenced
208 SNPs in 27 kb of non-overlapping amplicons from two hu-
man individuals (Methods), pooling all amplicons for sequenc-
ing. Inevitable variation in concentration of the pooled ampli-
cons caused very significant loss of efficiency: Even after careful
normalization, we found that the best-covered 80% of amplicons
spanned more than a threefold range of coverage.

In this case, therefore, for realism, we analyzed all amplicons
together, defining the coverage as the ratio of SNP-calling-
accepted bases in accepted reads to the total number of bases in
all amplicons. As before, we randomly selected appropriate num-
bers of reads to simulate different levels of coverage. Because we
observed a high error rate in the 454 reads, we also adjusted SNP
calling parameters to reject noisy reads (Methods).

With these adjustments, we still found a higher false-
positive rate than we had expected from genomic data, an aver-
age of one false positive in 27 kb at 20� coverage. We replicated
PCR and sequencing, and found a similar false-positive rate.
However, no false positives were found when we required that
SNP calls be made in both replications, indicating that these er-
rors likely arise as PCR errors.

At 20� coverage, as shown in Figure 2, our method gave
sensitivity of ∼83% in each of the independent replications. The
missing 17% of SNPs arose largely from uneven pooling. The

sensitivity was ∼77% when we required
that SNP calls be made in both replica-
tions.

Discussion

In this article, we have described meth-
ods for quality scoring and SNP detec-
tion for SBS technology, and a series of
controlled experiments that provide an
accurate assessment of both methods in
the context of 454 GS20 sequence data.

Quality scores

The new quality scores for 454 sequence
data presented here provide several key
advantages over existing ones:

● They more accurately reflect the true
error rate.

● They accurately predict undercalls,
which is critical, given that these com-
prise ∼30% of the errors.

● They identify many more high-
quality bases: ∼60% of the bases are
accurately classified as Q30 (or one er-
ror in 1000) in an average run, and up
to 25% can be identified as Q35.

● They identify a large proportion of the
bases as being in high-quality neigh-

borhoods: More than 75% of the bases fall into a 20/15 neigh-
borhood, compared with only ∼41% using the old scores, and
41% are in 30/30 neighborhoods, versus 0% with the old
scores. We showed that these high-quality neighborhoods are
very reliable for polymorphism calling.

The construction of quality scores described in this work
should apply to any SBS system, with the particular SBS system
affecting only the choice of predictors. While there is no formula
for choosing these predictors, they can generally be arrived at
through careful examination of the data and systematic testing
of candidate predictors. To be effective, predictors must capture
diverse aspects of the system operation. For the 454 GS20 system,
we found that the most effective predictors relied on the flow-
gram data, as they capture the varying levels of system noise.
Generally, we expect that predictors based on “raw” data will
yield the best results.

SBS technologies are frequently updated, so quality scoring
will need to be periodically recalibrated in order to keep accuracy
high. This will involve both generation of new data from ge-
nomes of known sequence and revisiting of the choice of predic-
tors. Fortunately, as sequencing costs drop, so does the cost of
this operation.

SNP discovery

We have demonstrated an effective method for highly specific
SNP discovery, appropriate for any sequencing system that has
suitable quality scores. With high coverage by 454 GS20 reads,
whose average quality is lower than Sanger chemistry reads, it
achieves exceptional specificity: no false positives in ∼215 kb of
diploid sequence at 20� coverage. With low coverage the per-
formance depends on the read quality in NQS windows, but it is

Figure 2. Sensitivity of SNP calling as a function of coverage. Coverage is counted by bases accepted
for SNP calling. At all coverages, the fraction of the reference that could be correctly called in haploid
DNA (a BAC) exceeds the sensitivity for heterozygous SNPs that can be called in diploid DNA (a
mixture of two different, overlapping BACs). Sensitivity is generally lower for heterozygous SNPs in PCR
amplicons, due to pooling variation. No false positives were found at any coverage level in genomic
data: ∼545 kb haploid, ∼220 kb diploid. For PCR amplicons approximately one false positive was found
in ∼27 kb.
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still far better than the individual base qualities; e.g., in 454 GS20
reads, we find ∼65 false positives/Mb called in NQS 20/15 win-
dows.

Sensitivity is of course dependent upon coverage. With 20�

coverage by accepted bases, we find sensitivity above 90% in
diploid shotgun data. The sensitivity obtained in a particular
application will depend on the character of the data set: how the
chosen sequencing technology interacts with the target genomic
sequence (e.g., the nature of the repeats present), and the even-
ness of coverage available (e.g., the accuracy of pooling of PCR
products).

In conclusion, we used controlled experiments to demon-
strate a general framework for defining quality scores that incor-
porate diverse types of information about SBS data. The resulting
highly accurate quality scores provide a rigorous quantitative
framework for assessing data quality. This should enable appli-
cations such as polymorphism detection to be done with high
accuracy, helping the new sequencing technologies fulfill their
promise.

Methods

Quality scores

Training and testing data
The training data (Supplemental Table 1) consisted of four re-
gions (each being half of a 60 � 60 mm 454 plate) collected from
three different machines in our laboratory over a period of 14
mo, for a total of 58 Mb. They included data from different spe-
cies with different genome compositions: a mixture of three hu-
man BACs, Burkholderia thailandensis strain E264, Francisella tu-
larensis strain 257, and Listeria monocytogenes strain 10403s.

Test sets included 13 regions and also came from all three
machines and from the same four species, with the addition of
Pseudomonas aeruginosa and other strains of L. monocytogenes, for
a total of 200 Mb. All reads used for training and testing are
available for download from the NCBI trace server (see Supple-
mental Tables 1, 2).

Error predictors
Many different error predictors were initially evaluated. We de-
scribe in detail here those that produced the best combination of
results and were adopted into the final version of the quality
score generation. The “current base” refers to the base for which
a quality score is being generated. The predictors are ordered by
(decreasing) importance.

1 and 3. Local noise: A measure of the noise seen in a flow is
abs[flow � round(flow)]. Importantly, this measure is infor-
mative about possible undercalls (e.g., a flow value of 0.45,
which rounds to 0). We used two predictors based on this
measure. Predictor 3 is this measure for the current base’s flow.
Twenty bins were used for this predictor. Predictor 1 is the
maximum of the measure in a radius of 10 flows around the
current base’s flow. Twelve bins were used for this predictor.

2. Read noise: A measure of the overall reliability of basecalls in
the read was obtained as follows. All calls of 0 were grouped
together, and all calls of 1 were grouped together. The mean
and standard deviation of the height of the flow for each
group (m0 and s0, m1 and s1) were calculated. Reads for which
these distributions had greater overlap were likely to have
more errors. The predictor used is �(m1 � m0)/(s0 + s1). This
predictor increases with the amount of overlap and therefore

with the probability of error in the read. Sixteen bins were
used for this measure.

4. Homopolymer count: The number of consecutive bases that
are identical to the current base, including itself. Six bins were
used for this predictor.

5. Incomplete extension: the number of bases identical to the
current base in the previous flow cycle. For example, if the
sequence were GAAAAAATA, where the final A is current, the
value of this predictor would be six. The current base is likely
to have additional loss-of-synchrony noise because some of
the DNA strands will not have completed the incorporation of
all six As. Seven bins were used for this predictor.

6. Position on read: abs(40 � current base position). Read qual-
ity is slightly worse at the beginning of the read, improves up
to base 30–40, and then declines all the way to the end of the
read. Thus observed quality is, approximately, a monotonic
function of the absolute value of (40 � base position). Fifteen
bins were used for this predictor.

Alignment and read selection
The accuracy of the quality scores depends on correct training
data; in particular, it is critical to avoid misplaced or misaligned
reads. We used the QueryLookupTable aligner developed for
ARACHNE (Jaffe et al. 2003). The wrapper script evalfastaNum.pl
records the parameter settings we developed for 454 reads
(Supplemental materials). This aligner performs a multipass heu-
ristic alignment based on k-mer seeds. We optimized the align-
ments found using a banded Smith-Waterman alignment with
the cost of an indel (9) less than that of a mismatch (17).
(Matches were treated as 0 cost.)

We rejected alignments with <80% identity and required
that reads used for training and testing the quality scores have
only one accepted alignment to the reference. In addition, for
genomes for which finished reference was not available, we only
used reads whose best alignments were completely contained
within a high-quality (NQS 40/40) part of a draft assembly that
did not rely upon 454 data. Finally, aligners are less consistent at
the ends of reads because there are many different ways to assign
an error if there is little context to one side of it. Therefore, we
required that there be at least three bases with no errors at each
end of the read. If that condition was not met, we trimmed the
read from each side, until the condition was met.

This selection process results in elimination of the worst
reads from both the training and testing sets. Thus, our results
overestimate the average quality of the 454 data. However, the
proportion of reads rejected for poor alignments was only 3%, so
this overestimate is not serious. So the key points about accuracy
of the quality scores are not affected.

Binning and quality scoring
To generate the training data, each base used was marked correct
or incorrect based on the read alignment; undercall errors were
charged to one of the neighboring bases at random. Each of the
six predictor values were binned into six to 20 bins; each base,
together with its correct/incorrect status, was assigned to one bin
in the resulting six-dimensional space containing ∼2.4 million
bins. To infer quality scores from these data without excessive
computation or over-fitting, we used a version of the algorithm
developed for phred (Ewing and Green 1998) to reduce this space
to ∼1000 non-overlapping sets of bins, relying on approximate
monotonicity of the individual predictors. Each set is defined by
a single bin. The quality table consists of a list of defining bins in
priority order, along with their observed qualities. The observed
quality is �10log10(estimated error rate), rounded to the nearest
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integer, where the estimated error rate for a set of bins with w
wrong and c correct bases is (1 + w)/(1 + w + c). Because the phred
algorithm, as described in Ewing and Green (1998), requires com-
pute time quadratic in the number of bins, we developed an
equivalent algorithm that works in linear time.

The quality table was used to assign quality scores to bases
by identifying the highest-priority bin in the table for which the
base qualifies and assigning the corresponding quality. A base
qualifies for a bin in the table if all of its predictor values are at
least as high as those of the bin. Scores beyond the limits of the
training data were assigned to the closest bin. In order to accel-
erate the quality scoring, we changed the way quality scores were
looked up in the table. Rather than looking through the whole
table for each base as described in Ewing and Green (1998),
which takes time proportional to (number of bases) � (number
of lines in the table), we precomputed the quality values for all
∼2.4 m bins, allowing quality scoring in time proportional to
(number of bases).

Evaluating quality scores
To evaluate quality scores on the testing data, we used the same
read alignment methods but assigned undercall errors to the
neighboring base with the lowest quality. When evaluating the
old quality scores we used only the forward-aligning reads, be-
cause in that orientation our aligner places gaps at the ends of
homopolymer runs, respecting the directionality of the old qual-
ity scores. To create Figure 1C, we recomputed observed quality
in the testing data, penalizing one type of error at a time, and
counting the other errors as correct. We adjusted quality score
predictions according to the prevalence of each type of error in
the aggregate data. For example, to estimate the prediction for
miscall errors alone, which are 4% of all errors, we added
�10log10(0.04) = 14 to the predicted qualities.

SNP detection

Alignment and read selection
The alignments were generated and filtered as described above.
For SNP calling, we relaxed the uniqueness criterion, to allow for
calls in imperfect repeats. We allowed reads with more than one
alignment provided that the second best alignment had at least
four times more errors than the best (counting 0 errors as 1 for
this purpose).

To determine accepted bases for SNP calling, we used the
NQS criterion (Results; Altshuler et al. 2000), with one variation.
In the standard implementation, the five bases at each end of the
read cannot pass NQS. For a 100-base read, this would represent
a loss of 10% of the bases. Therefore, we used these end bases but
continued to trim to a three-base perfect match at each end of the
read.

Sensitivity and specificity were evaluated at 0� to 33� cov-
erage; specifically, 0–1� in 0.1� increments, 1–16� in 0.5�

increments, and 16–33� in 1� increments. Reads were selected
at random, with probability (target coverage)/(available cover-
age).

Single read data
We used 36 Mb of sequence data: five regions from three 454
runs (Supplemental Table 3), each region containing one of two
pools of non-overlapping human BACs. Pool A contained BACs
AC005865, AC018698, AC027763; Pool B, BACs AC005912,
AC090531, AC040977. The BAC pools were chosen so that each
BAC in pool A overlaps with exactly one BAC in pool B, and the
BAC pairs were selected for a higher-than-average SNP density in

the overlaps. We created mutated references for assessing SNP-
calling sensitivity using the UCSC snp126 database (Kuhn et al.
2007). We selected SNPs at random from those whose flanking
sequences exactly matched the corresponding BAC sequence.

Bidirectional read haploid data
The data used were the pool-B reads from the single-read case,
23 Mb of sequence. Unambiguous reads were assigned to the
BAC to which they aligned, and the available coverage was com-
puted separately for each BAC to eliminate effects of uneven
pooling. For each desired coverage level, 20 subsets of the
reads were selected independently at random. The reported
fraction of reference callable is the weighted (by number of
bases) mean value observed in the 20 subsets for each of the three
BACs.

Bidirectional read diploid genomic data
In this case, we computed accepted reads with the same criteria
but aligned against an expanded set of nine targets: the non-
overlapping part of each of the six BACs together with the pool-A
sequence of each of the three overlap regions. The analysis was
performed on the ∼120 kb of overlap region. Based on complete
alignments of the finished sequences of the BAC pairs, the over-
lap region contains 222 positions at which the A and B sequences
differ by a substitution whose 11-base neighborhood contains at
most one other substitution and no indels. The data used were
the same runs used in the single-read case, with the addition of
the BAC pool-A region used for training the quality scores; be-
cause the pool-A reads carry no helpful information in this ex-
perimental design, no unfair benefit is obtained from reusing the
training data. Subsampling to obtain reduced coverage levels was
performed as for the haploid genomic data, except that the reads
were selected at random from the two pools with equal probabili-
ties to simulate diploid data.

Bidirectional read diploid PCR data
Two individual humans from the ENCODE set (NA18558 and
NA18564) were chosen arbitrarily, and a random subset was se-
lected of heterozygous positions for those individuals according
to the ENCODE release r19-2005-10-24 (nonredundant) whose
SNPs were in dbSNP release 123 (b34) and were bi-allelic accord-
ing to that dbSNP release. Positions that lay in RepeatMasker-
tagged regions (per the UCSC genome browser) were removed, as
were positions at which primer design for 100 base amplicons
failed. We used read filtering, SNP calling criteria and subsam-
pling as in the diploid genomic case. To reduce the impact of
PCR-introduced mutations, we required 95% identity for the best
read alignment and ignored SNP calls in the five bases at each
end of each read. We also ignored SNP calls in primers or in a base
adjacent to a primer, and rejected a single primer pair that proved
to amplify two genomic regions.
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